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Preface to the Second Edition 

Ten years have passed since the publication of the first English edition. "Ten years is 
a long time, even when you are not in jail." If we recall that the article on Riemann 
appeared in Priroda (Nature) in 1976, this Russian vaudeville joke is more than ap- 
propriate. Only the author's youth can account for the insane enterprise of presenting 
the scientific achievements and the biography of Riemann in 60 pages and the con- 
nection between physics and topology in the same space. Judging from the fact that 
the book sold out and got favorable reviews, there is a demand for publications of 
this type. It seems to me that popularizations aimed not at a narrow specialist but at 
a broader reader are especially needed nowadays. Specialists obtain information in 
their fields almost instantly thanks to the Internet, but to find out what is happening 
in contiguous fields, what problems and results are of great interest here, is not at all 
easy. 

Returning to my own book, I note with a certain pride that at least I seem to 
have evaluated accurately the trends in the development of theoretical physics. It is 
the combination of physics with topology and algebraic geometry that has led to the 
brightest achievements of mathematical physics in the last decade. It suffices to note 
the remarkable results of S. Donaldson on 4-dimensional smooth manifolds obtained 
in the early 1980's and closely connected with the theory of gauge fields (instantons) 
and the very recent papers of E. Witten and N. Seiberg, which are also based on 
physical ideas and are shedding new light on Donaldson's theory. 

A second indisputable example is the development of knot theory after the re- 
markable 1984 paper of  V. Jones. Here also the main progress is closely connected 
with the intertwining of ideas and methods from field theory, statistical physics, and 
topology. I have tried to include some of the new advances in the second edition, 
keeping in mind the popular level on which this book is written. 

Now a few words about the first part, in which the scientific biography of Riemann 
is discussed. This part has undergone only minor changes. I have corrected certain 
historical and mathematical inaccuracies and a large number of misprints, and added 
a few new facts about the development of Riemann's ideas. Indeed the last decade 
has confirmed the amazing modernity and fecundity of Riemann's ideas and results. 

The most sensational result of recent years has been the proof of Fermat's last 
theorem. The proof of A. Wiles and R. Taylor uses the full power of modern algebraic 
geometry, whose foundation played a definitive role for Riemann's ideas and methods. 



viii Preface to the Second Edition 

Of the classical legacy of mathematics only Riemann's hypothesis on the zeros of the 
(-function still remains unproved. 

Interest in the personality and works of Riemann has noticeably increased in re- 
cent years. It suffices to mention the beautiful new edition of Riemann's works by 
R. Narasimhan, which contains articles by well-known specialists on the current state 
of the branches of mathematics in which Riemann worked. A solid biography of Rie- 
mann written by D. Laugwitz appeared in German in 1996 and recently in English. 

I hope that my little book will be useful to the reader who wishes to look into 
several branches of mathematics and physics through the prism of the history of the 
life and works of the man who determined its shape. 

M. MONASTYRSKY 

December, 1998 
Harvard University 

Cambridge, MA 



Foreword to the First Edition 

Soviet citizens can buy Monastyrsky's biography of Riemann for eleven kopeks. This 
translated volume will cost considerably more, but it is still good value for the money. 
And we get Monastyrsky's monograph on topological methods in the bargain. It was 
a good idea of Birkh~user Boston to publish the two translations in one volume. The 
economics of publishing in a capitalist country make it impossible for us to produce 
the small cheap paperback booklets, low in quality of paper and high in quality of 
scholarship, at which the Soviet publishing industry excels. Monastyrsky's two book- 
lets are outstanding examples of the genre. By putting them together, Birkhiiuser has 
enabled them to fit into the Western book-marketing system. 

The two booklets were written separately and each is complete in itself, but they 
complement each other beautifully. The Riemann biography is short and terse, like 
Riemann's own writings. It describes in few words and fewer equations the revolu- 
tionary ideas which Riemann brought into mathematics and physics a hundred and 
twenty years ago. The topological methods booklet describes how some of these 
same ideas, after lying dormant for a century, found new and fruitful applications in 
the physics of our own time. The two parts of the story together illustrate one of 
the central themes of science, the mysterious power of mathematical concepts to pre- 
pare the ground for physical discoveries which could not have been foreseen or even 
imagined by the mathematicians who gave the concepts birth. In telling this story, 
Monastyrsky does not begin, as Dostoevsky began The Brothers Karamazov, with a 
quotation from the Gospel of St. John: "Verily, verily, I say unto you, except a corn of 
wheat fall into the ground and die, it abideth alone; but if it die, it bringeth forth much 
fruit." Dostoevsky's epigraph would be as appropriate to the history of mathematical 
physics as to the history of the human soul. Riemann's grains of wheat, many of them 
unknown and unpublished during his lifetime, are still bringing forth fruit abundantly 
today. 

The quality which makes Monastyrsky unique among expositors of contemporary 
physics is his depth of historical focus. He sees modern ideas in a perspective which 
goes back all the way to Riemann. But this does not mean that his account is only 
of interest to historians. On the contrary, his descriptions of recent developments in 
physics are thoroughly modern and may be read with profit by Americans who agree 
with the dictum of Henry Ford that history is bunk. The reading of the Riemann biog- 
raphy is not a prerequisite for understanding the monograph on topological methods. 
The monograph is self-contained and provides a splendidly clear explanation of such 
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modern inventions as liquid crystals, 't Hooft monopoles, and twisted hedgehogs. The 
menagerie of strange objects populating the recent literature of mathematical physics 
is made intelligible by viewing them all as special cases of a single unifying con- 
cept. The unifying concept is the classification of spaces and mappings into discrete 
topological types. Each species of crystal, monopole, or hedgehog corresponds to a 
particular class of mappings, and the variety of species is a consequence of the inher- 
ent richness of structure allowed by the topological classification. The exploration of 
possible topological structures which may be relevant to physics is not yet at an end. 

Monastyrsky's lucid account of the modern topological zoo can be understood by 
people who have no interest in Riemann, and his biography of Riemann can be un- 
derstood by people ignorant of modern physics. Nevertheless, both classes of readers 
could profit enormously from studying that half of this book which is less familiar 
to them. The physicist could learn some history, and the historian could learn some 
physics. Both could gain a deeper understanding of their own fields by seeing them as 
part of a broader vision, a vision combining historical scholarship with mathematical 
expertise. Monastyrsky is a living bridge between the two cultures. Riemann's life 
and death, and the slow fruition of his ideas a hundred years later, constitute a human 
and intellectual drama which must be seen as a whole in order to be fully understood. 

FREEMAN J. DYSON 
Princeton, 1987 



From the Introduction 
to the First Edition 

This book consists of two independent parts: "Bernhard Riemann" and "Topologi- 
cal Methods in Contemporary Physics." They were written at different times, and I 
have not tried to unite them into a single entity. Therefore, I was at first surprised 
at Birkh~iuser's suggestion that they be published under a single cover. However, af- 
ter some reflection, I found this proposal remarkably appropriate: Riemann's ideas 
permeate contemporary mathematics and physics. Perhaps reading these two parts in 
conjunction will force the reader to appreciate this fact. 

Riemann was one of the few great minds whose works combined the ability to 
solve difficult problems with a deep philosophical penetration into the basic laws of 
the universe. This fact is reflected in the unfinished notes in which he wrote about his 
plans as follows: 

The works which now mainly occupy me are 
1. In a way similar to that which has already been so successfully 

used for algebraic functions, exponential or circular functions, elliptic 
and Abelian functions, introduce the imaginary into the theory of other 
transcendental functions. In my inaugural dissertation I have provided 
the most necessary general preliminary work (cf. Art. 20 of this disserta- 
tion). 

2. In connection with this there are new methods of integrating partial 
differential equations, which I have already applied to several physical 
subjects. 

3. My main work concerns a new conception of the known laws of 
nature . . . .  1 

Recently I again had occasion to encounter these statements of Riemann when 
they were quoted by the outstanding contemporary mathematician I. M. Gel'fand. 
Speaking at a meeting of the Moscow Mathematical Society honoring his 70th birth- 
day, Gel'land named Riemann among his mentors, in the true sense of that word, 
along with the academic advisor of his graduate-student years, academician A.N. Kol- 
mogorov (1903-1987). 

1 Quoted in Klein, Development of Mathematics, p. 233. 
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Several other observations are in order. The book Riemann grew out of  a modest 
article dedicated to the 150th anniversary of Riemann's birth and was published in 
the Soviet journal Priroda (Nature) in 1976. It was written on the recommendation 
of Professor B.N. Delone, a remarkable mathematician and also an authority on his- 
tory. In preparing the article I discovered to my surprise that there was absolutely no 
detailed biography of this mathematical genius in Russian. I therefore decided that a 
book on Riemann, incorporating not only an account of his life and works but also an 
appraisal of his role in contemporary science, might be useful. I am very pleased that 
it is also being translated into English. 

This is in no way a study in history per se, although I did study carefully all the 
published materials available to me. I hope that it does not contain serious historical 
and factual mistakes. Unfortunately, I was not able to study Riemann's archives. 
Several materials, in particular Riemann's letters to his family, have been published 
by E. Neuenschwander. 2 These letters enrich the picture of  Riemann by providing 
a series of interesting details, but they do not at all change the impression one gains 
from reading what his friends and colleagues wrote about his life. 

In the several years that have passed since the Russian edition came out, the al- 
liance between mathematicians and physicists has been strengthened and expanded. 
Especially impressive results in the realm of mathematical physics have been con- 
nected with the penetration of topological ideas and the development of the method 
of the inverse scattering problem--a powerful method of  integrating nonlinear equa- 
tions. Riemann's ideas and methods have found their application here as well. 

Unfortunately, it was not possible to incorporate these results into the present 
book without undertaking serious revisions. However, one can find something about 
this topic in the chapter, "Soliton Particles," in Part II and in the literature cited in the 
Bibliography to Part II. 

There has been one more (1983) outstanding result in the realm of algebraic 
geometry: the proof of L. Mordell's conjecture on the finiteness of the number of 
rational points of  an Abelian variety. (Among other things, this theorem also con- 
firms the finiteness of the possible number of solutions of the equation x" + y" = z" 
(n > 3)--Fermat 's  Last Theorem.) The proof of  this conjecture, obtained by the 
German mathematician G. Faltings, uses subtle and deep methods of contemporary 
algebraic geometry. 3 These works can also be considered a high point in the progress 
achieved over the years along the path begun by the classics of algebraic geometry, 
including Riemann's work. 

The final result I would like to mention is associated with the unexpected applica- 
tion of so abstract a theorem as the Riemann-Roch theorem to the theory of  coding. 
In using this theorem the problem of constructing codes comes down to an analysis of  
a l g e b r a i c  cu rv e s .  4 All of these results and many others obtained in recent years owe 
their origin to Riemann's work. 

2E. Neuenschwander, Cahier du S~minaire d'Histoire des Math~matiques, 2 (1981): 85-131. 
3G. Faltings, "Endlichkeitss~itze fiir abel'sche Varietiiten fiber Zahlk6rpern," Invent. Math., 73 (1983): 

349-366. 
4See the review article of V. D. Goppa, "Codes and information," Russ. Math. Surveys, 39 (1) (1984): 

77-120. 
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In conclusion, I wish to express my appreciation to the staff of Birkh~iuser for their 
exceptional kindness and competent collaboration in preparing the manuscript. In 
spite of all the complications born of communicating over a distance, Birkhauser has 
brought this project to completion. It is a pleasure to express gratitude to 
K. Peters,who suggested that this book be published by Birkh~iuser. 

I would also like to add the following list of my colleagues and friends who helped 
in the final preparation of the book and thank them especially for their advice on Part 
II: S. S. Demidov, E.I. Kats, V. S. Kirsanov, I. M. Lifshits, S. P. Novikov, Ya. A. 
Smorodinskii, and K. G. Boreskov. 

M. MONASTYRSKY 
Moscow, 1984 
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Par t  I 

Bernhard Riemann 



Chapter 1 

Beginnings 

"Mathematicians are born, not  made." 

HENRI POINCAR~ 

I N the ranks of the outstanding mathematicians of the nineteenth century the name 
of Bernhard Riemann occupies an illustrious place. Although his career lasted only 

fifteen years, he made an enormous contribution to almost all areas of mathematics. 
He worked on the theory of the integral, the theory of functions of a complex variable, 
geometry, calculus of variations, the theory of electricity, and other subjects. While 
this short list attests to his multifaceted talents, it does not begin to suggest the power 
of his mind and his striking originality. Practically all of Riemann's articles contain 
completely new ideas, such as the introduction of the concept of Riemann surfaces, 
which provided the foundation for contemporary complex analysis and topology. The 
value of Riemann's work is significantly greater than the numerous concrete results 
he achieved; his exceptionally fruitful ideas stimulated further developments not only 
in mathematics but also in mechanics, physics, and the philosophy of the natural 
sciences as a whole. 

Georg Friedrich Bernhard Riemann was born on September 17, 1826, in the vil- 
lage of Breselenz, near the city of Dannenberg in the kingdom of Hannover. His 
father, Friedrich Bernhard Riemann, was a Lutheran pastor who participated as a lieu- 
tenant in the Napoleonic Wars of 1812-1814, the "wars of liberation." He was in the 
army of the Austrian general Count Ludwig Wallmoden (1769-1862), which gained 
distinction in the siege of Hamburg. The army, which combined Russian, Prussian, 
and other allied troops, smashed the units of Marshal Davout at Mecklenburg. 

Friedrich Bernhard was already middle-aged when he married Charlotte Ebell, the 
daughter of a court councillor. Bernhard was the second of their two boys and four 
girls. As a boy his health was poor; in general illnesses and premature deaths haunted 
all the members of his family. His mother died when he was twenty, and his brother 
and three of his sisters also died quite young. Riemann was always very attached to 
his family and maintained the closest contact with its members throughout his life. 
Timid and reserved by nature, he felt at ease and free in the company of his relatives. 
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When he was five years old, history, especially the history of Poland, interested 
him most. His special interest in the history of Poland might seem a little puzzling 
to a modern reader, but if one looks at the events of 1830 a lot will become much 
clearer. The famous Polish Uprising began in November 1830 with the attack on the 
Belvedere Palace, the resistance of the great prince Konstantin (brother of Russian 
Tsar Nicolai I and the governor general of Poland). This revolt became known in 
history as the November Insurrection. The war lasted from January until September 
of 1831, the superior Russian forces finally defeated the Polish insurrects. More 
than 6000 leaders of the uprising were forced into exile. The exodus of elite Poles is 
known in history as the Great Emigration. Most of them emigrated to France but some 
settled in other countries, in particular, Germany. Newspapers of that time devoted 
a lot of space to the uprising. Not surprisingly, young Riemann was intrigued by 
Polish events. 
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An interest in history and in the humanities in general is characteristic of many 
great mathematicians. One has only to think of Carl Friedrich Gauss (1777-1855) 
who, as a student, wavered between philology and mathematics as his specialty, and 
Carl Gustav Jacob Jacobi (1804-1851), who participated in a seminar on ancient 
languages. 

Soon the family began to notice his striking ability to make calculations. At the 
age of six, under the tutelage of his father, who was quite an educated man, he solved 
arithmetic problems. When he was ten, a teacher named Schulz began to work with 
him, but the pupil soon outstripped his master. At the age of fourteen Riemann entered 
directly into the third (senior) class of the Gymnasium in Hannover; after two years 
he transferred to the gymnasium of the city of Liineburg, where he continued to study 
until he was nineteen. Riemann was not a brilliant student, although he made a serious 
study of such subjects of the classical gymnasium curriculum as Hebrew and theology. 

Schmalfuss, the director of the gymnasium, noticed the boy's mathematical talents 
and allowed him to use his personal library. On one occasion he gave Riemann a 
textbook on the theory of numbers written by Adrien-Marie Legendre (1752-1833). 
Riemann studied this book, nearly 900 pages long, for six days. Various aspects 
of what he learned there were used some years later in his own work on the theory 
of numbers. 

In 1846, in accordance with his father's wishes, Riemann matriculated at G6ttin- 
gen University in the faculty of theology. His interest in mathematics was so strong, 
however, that he asked his father to allow him to transfer to the faculty of philoso- 
phy. At this time the faculty included such well-known scholars as the astronomer 
Carl Wolfgang Benjamin Goldschmidt (1807-1851), who lectured on terrestrial mag- 
netism, the mathematician Moritz Stern (1807-1894), who lectured on numerical 
methods and definite integrals, and the "prince of mathematicians," Carl Friedrich 
Gauss. At the time, Gauss, who was at the height of his powers, gave a brief course 
on the method of least squares. Given Gauss' extremely unsociable character and his 
secluded way of life, it is doubtful that Riemann had any personal contact with him at 
this time. Stern, however, did notice Riemann's ability; he subsequently recalled of 
Riemann that "he already sang like a canary. ''1 

By the mid 1840's, Gfttingen University, where Riemann was to work almost all 
of his life, had already existed for more than 100 years. It was considered one of the 
most illustrious universities in the German kingdoms. Founded in 1734 by the British 
King George II, who was simultaneously the Elector of Hannover, the university was 
named in his honor "Georgia Augusta" and opened in 1737. George II intended it to 
be the best in Germany, and first-rate scholars were invited to it. Stormy periods of 
German history (the Seven Years' War, the Napoleonic Wars, etc.) left it relatively 
untouched. However, in 1837, there occurred an event that led to a sharp decline in 
the academic standard of the university. The new king Ernst Augustus II (the former 
Duke of Cumberland) abolished the democratic constitution of 1833, which had been 
adopted in Hannover after serious popular unrest aroused by the July Revolution of 

1 Klein, F. Development of Mathematics, p. 233. 
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1830 in France. The constitution had proclaimed the establishment of a bicameral 
parliament with the participation of all levels of the population, (including the peas- 
antry), freedom of speech, freedom of the press, open legal proceedings, etc. The 
1833 constitution was replaced by a new one that, in essence, reinstated the old Han- 
noverian constitution of 1819. All government employees--professors included-- 
were obliged to swear allegiance to the new constitution. Despite the great dissatis- 
faction with the change, all swore allegiance except for seven professors who have 
come to be known in history as the "G6ttingen Seven": the jurist Wilhelm Eduard 
Albrecht (1800-1876), the historians Georg Gottfried Gervinus (1805-1871, author 
of a history of German poetry), Friedrich Christoph Dahlmann (1785-1860), the Ara- 
bist and Hebraist Georg Heinrich August Ewald (1803-1875), the physicist Wilhelm 
Eduard Weber (1804-1891), and the philologist brothers Jacob (1785-1863) and Wil- 
helm Grimm (1786-1859), founders of classical German philology and collectors of 
fairy tales. 

All were forced to leave the university, and Jacob Grimm, Dahlmann and Gervinus 
were exiled from Hannover as well. The names of these scholars were well-known, 
not only in all the German states but also throughout Europe. Their expulsion from 
the university deeply agitated society both within the country and beyond its borders. 
Even the governments of Prussia and Austria, which supported the king, disapproved 
of these extremely harsh actions. The expelled professors recei,ced posts in other 
universities while G6ttingen University immediately lost its reputation as the best 
German university. The university began to revive only in 1848, when the king, who 
was frightened by the revolutions of that year, agreed to restore the 1833 constitution. 
Wilhelm Weber was among others who then returned to the university. 

Ironically, this episode was to be repeated almost verbatim a century later. The 
coming of the Nazis to power led to the exclusion, on the basis of the racial laws of 
the Reich (Reichgesetze), of seven professors of non-Aryan origins: M. Born, (1882- 
1970), R. Courant (1888-1972), E. Noether (1882-1935), and others. The Nobel 
laureate James Franck, (1882-1964) left Germany in protest against the racial laws. 
G6ttingen University was dealt a blow from which it has not yet recovered. After 
studying for one year at G6ttingen, Riemann moved to Berlin. At that time such bril- 
liant mathematicians as Carl Gustav Jacob Jacobi (1804-1851), Jakob Steiner (1796- 
1863), Peter Gustav Lejeune-Dirichlet (1805-1859), and Ferdinand Gotthold Max 
Eisenstein (1823-1852) were teaching at the University of Berlin. In terms of the 
quality of its mathematics faculty, the University of Berlin was better than G6ttingen. 
It was founded by Wilhelm von Humboldt (1767-1835) in 1810, at a time when 
Napoleon's army was occupying the Prussian capital (those were idyllic days when 
a universitycould be opened in an occupied city). Humboldt's principles, which be- 
came the foundation of a contemporary university education, played a critical role 
in promoting scholarship in Germany. In contrast to a tendency traceable to Gott- 
fried Wilhelm Leibniz (1646-1716), Humboldt believed that universities were the 
proper place for scholarship. "Solitude and freedom are the principles prevailing in 
her realm." As far as teaching went, he advocated the principle, "Lehrfreiheit, Lern- 
freiheit" (freedom to teach, freedom to learn). Each professor could teach any course 
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he chose, and a student could choose lectures that interested him. The only (albeit 
fairly strict) control over academia was the state examination that a student took upon 
completion of the university. 

An interesting feature of German universities was the freedom with which stu- 
dents were able to move from one university to another. As Wilhelm Ostwald (1853- 
1932) noted in his Klassiker, "If a specialty of interest to a student is presented at a 
university by an eminent has-been, then the student transfers to a different university 
where he will be able to take this subject from a young and progressive docent." 

The two years in Berlin were exceptionally important in Riemann's scientific 
preparation. It was here that he became friends with the excellent mathematician 
Eisenstein, with whom he discussed the possibility of introducing complex variables 
when investigating elliptic functions. 

Eisenstein completed several outstanding works on the theory of elliptic func- 
tions (Eisenstein's 0-series expansion) and on the theory of invariants. He was highly 
esteemed by Gauss, to whom is ascribed the following statement: "There have been 
only three epoch-making mathematicians: Archimedes, Newton, and Eisenstein." But 
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if we are to believe Felix Klein (1849-1925): 

Eisenstein was too much the formula-man, who, starting from compu- 
tation, found in it the roots of his knowledge and was not able to grasp 
Riemann's general ideas on functions of complex variables, which, ac- 
cording to Dedekind (1831-1916), Riemann first worked out in detail in 
the fall of 1847, at the age of  21. In any case Eisenstein was the only 
mathematician with whom Riemann associated at that time. Unfortu- 
nately Eisenstein died at the age of 29. 2 

The lectures of Dirichlet proved to have the greatest influence on Riemann. Klein, 
in his Development of Mathematics in the 19th Century, wrote: 

Riemann was bound to Dirichlet by the strong inner sympathy of a like 

mode of thought. Dirichlet loved to make things clear to himself  on an 
intuitive level; along with this he would give acute, logical analyses of 
foundational questions and would avoid long computations as much as 

possible. His manner suited Riemann, who adopted it and worked ac- 

cording to Dirichlet 's methods. 3 

21bid., p. 235. 
3Ibid., pp. 234-235. 



Beginnings 9 

Riemann's stay in Berlin coincided with the March Revolution in Prussia but, as 
far as one can judge from the literature, political events held little interest for him. It 
is known only that at the very height of the revolution, together with other students, he 
defended the palace of the Prussian king, Friedrich IV, for almost twenty-four hours. 
When it became clear that there was no direct threat to the king's life, he returned to 
the university. 

In 1849 he returned to G6ttingen, where he attended the lectures of Wilhelm 
Weber. Weber, a close friend and assistant of Gauss, was the author of well-known 
works on electrodynamics. He became famous for the invention (together with Gauss) 
of an electromagnetic method of telegraphy. Weber himself built the receiving and 
sending apparatus and conducted a demonstration of them in operation (one appa- 
ratus was set up in the observatory, the other in the physics institute at G6ttingen 
University). As a person Weber was exceptionally polite and pleasant. 

Riemann's acquaintance with Weber was of decisive significance for the young 
man's entire subsequent fate, both personal and professional. For over a year and a 
half Riemann worked as an assistant in Weber's laboratory. Undoubtedly, Riemann's 
interest in physics took shape under Weber's influence; Riemann's works, however, 
bear the imprint of his unique personality. 

In 1850 a seminar on mathematical physics opened at G6ttingen University. Rie- 
mann became a participant in this seminar, run by Weber, Johann Benedict Listing 
(1808-1882), Stern, and Georg Ulrich. The content of the seminar was quite varied 
and included investigations not only of physical and mathematical works but also of 
philosophical ones. Riemann's interest in the philosophy of Johann Friedrich Herbart 
(1776-1841) dates from this period. The views of Herbart, who had been a profes- 
sor at G6ttingen University since 1833, proved to have a significant influence on the 
development of Riemann's own scientific world view. 

A student of J. Fichte (1762-1814), Herbart was an interesting figure in philoso- 
phy and left his imprint both in pedagogy and psychology. If his system of pedagogy 
(based on a strict regimentation of the upbringing of children) now seems archaic, 
his views on psychology seem, by contrast, rather prophetic. This can be seen in 
his work, "On the possibility and necessity of applying mathematics to psychology," 
which he read to the Royal Scientific Society in K6nigsberg on April 18, 1822: 

In the soil of speculation many things develop that do not originate out of 
mathematics and do not concern themselves with mathematics. I would 
not consider everything growing in such fashion as a weed--many noble 
plants can develop thus, but not one of them can achieve full maturity 
without mathematics. 

In psychology Herbart introduced an important scientific concept, "the threshold 
of consciousness." His definition of philosophy is no less interesting. 

All of our thoughts can be examined from two points of view: partly as 
the activity of our mind, partly on the basis of what those thoughts lead us 
to think. In the last analysis they are called concepts. Initial concepts are 
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composed under the influence of surrounding circumstances and there- 
fore bear a rather accidental character. When life pushes a man to reflec- 
tion, motivating him to give an account in his own personal thoughts, he 
first begins to take note of all the imprecision, incoherence, incomplete- 
ness and incorrectness of his concepts. Thus, partly as a consequence of 
the practical necessity to eliminate a contradiction or explain some mat- 
ter, partly as a result of purely theoretical interest, a desire arises in him 
to correct, to amplify, to tie together--in general to put his concepts into 
good order. In other words, he begins to feel an urge to philosophize. 
Thus, philosophy is the process of developing concepts. 

In keeping with the spirit of Herbart, Riemann felt that the task of science was 
to comprehend and explain nature logically by means of precise concepts. All of his 
multifaceted scholarly activity was dedicated to achieving this general goal. 

In 1850 G6ttingen Riemann's purely mathematical interests were concentrated 
on the problems of functions of a complex variable. He was unusually fortunate to 
have returned to G6ttingen after his two-year sojourn in Berlin, where he received a 
brilliant background in analysis. It is quite likely that nowhere else was the schol- 
arly atmosphere so full of geometric---or more precisely, of topological--ideas as at 
G6ttingen University. It was there, in 1847, that the first book on topology was pub- 
lished: Vorstudien zur Topologie (Prolegomena to Topology) in "G6ttinger Studien" 
by J.B. Listing. Listing had begun his studies of topology under the influence of 
Gauss. Gauss himself had worked on this subject a great deal, as can be seen from 
his scholarly legacy. Riemann was well acquainted with Listing and his work but, in 
point of fact, aside from the basic definition and several properties of knotted curves, 
could get nothing from it. This is not said to reproach Listing, but only reflects the real 
state of the branch of mathematics that Gottfried Wilhelm Leibniz called "analysis si- 
tus" (analysis of position). In his book Characteristica Geometrica (1679) he tried 
(in modern terms) to study the properties of figures associated with their topologi- 
cal rather than their metric parameters. He wrote that, in addition to the coordinate 
representation of figures: "We need a different analysis, purely geometric or linear, 
which also defines the position (situs) as algebra defines quantity." In the subsequent 
150 years, except for the famous formula on polyhedra ascribed to Leonhard Euler 
(1707-1783) (V - E § F = 2, where V is the number of vertices, E is the number 
of edges, and F is the number of faces) and the solution of the problem of the seven 
bridges of K6nigsberg (see Fig. 8.1, Part II), nothing more appeared in the theory of 
"analysis situs." 

The term "topology," introduced by Listing, became attached to this branch of 
mathematics only at the beginning of our century; Riemann used exclusively the term 
"analysis situs." 

Riemann's first scholarly successes are associated with the introduction of topo- 
logical methods into the theory of functions of a complex variable. 



Chapter 2 

Doctoral Dissertation 

"The shortest path between two truths in 
the real domain lies in the complex 
domain." 

J. HADAMARD 

A T the end of November 1851 Riemann presented his doctoral dissertation, 
"Grundlagen fiir eine allgemeine Theorie der Funktionen einer ver~inderlichen 

complexen Gr6sse" (Foundations of a general theory of functions of a complex vari- 
able). In order to appreciate the results obtained in the dissertation, it is useful to 
summarize briefly the results obtained up to that time, although it must be remem- 
bered that it is, unfortunately, very difficult to establish a clear notion of what Rie- 
mann himself really knew. A general feature of scholarly articles of that era is an 
extremely meager citation of  sources, even in those cases when the borrowing is ob- 
vious and is not, strictly speaking, being hidden. For example, in Riemann's work 
devoted to Abelian functions there is not a single reference to Niels Henrik Abel 
(1802-1829) and only one to Jacobi. In the case of Riemann's dissertation his most 
significant predecessors in developing the theory of functions of a complex variable 
were Augustin-Louis Cauchy (1789-1857) and Karl Weierstrass (1815-1897). The 
fact that there were no references to the work of Weierstrass in the dissertation is not 
surprising: his main work had not yet been published, although it was known that it 
had been done. The situation with respect to Cauchy is different: by 1850 Cauchy 
had already published many papers on the theory of a complex variable. His  first 
significant work, "M6moire sur la th6orie des int6grales d6finies," (Memoir on the 
theory of  definite integrals) was communicated to the Paris Academy in 1814, but 
was published only in 1827 with several emendations reflecting the evolution of his 
own views. In essence, he solved the following problem: Under what conditions on 
a complex function f(z)  is the integral f f ( z )dz  along a closed contour l equal to 
zero? In the main body of the text he does not discuss complex functions explicitly; 
rather, using a pair of  real functions P(x, y) and Q(x, y), he obtains the following 
result: The integral f f (z) dz is independent of the path of integration if the following 

11 
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conditions are satisfied: 

OP OQ OP OQ 
- -  = - - ;  . . . . .  . ( 2 . 1 )  

Ox Oy Oy Ox 

Conditions (2.1) are the criterion for analyticity (holomorphy) of functions of a 
complex variable. In modern literature they are called the Cauchy-Riemann condi- 
tions, although they appeared in the work of Euler on hydrodynamics and even earlier 
in the work of Jean le Rond d'Alembert (1717-1783). The construction of the theory 
of analytic functions on the basis of the conditions (2.1) is the achievement of Cauchy 
and Riemann. 

In 1825 Cauchy wrote a memoir on definite integrals with imaginary limits. It was 
found among his posthumous papers and was not published until 1874. In it Cauchy 
defined the integral of a complex function f (z) in a complex domain, including an 
investigation of the extremely important case when the function f (z) has a singularity. 

�9 - b 
For such functions the mtegral f~ f ( z )  dz may depend on the path. The same work 
contains the first appearance of the concept of the residue of an analytic function. 
Recall that the residue of an analytic function f ( z )  is defined to be the coefficient of 
(z - Zo) -1 in the expansion of f ( z )  in the series 

f (z) = ~ a,(z - Z O )  n . 

In a work completed in 1831 and published in 1836 Cauchy obtained the power series 
expansion for an analytic function f ( z )  and the integral representation of f ( z )  inside 
a circle. Finally, his famous theorem on residues--the Cauchy residue theorem-- 
appeared in 1846: Let f (z) be an analytic function in the region ~2 having poles at 
the points 21,... ,zn; then 

f f ( z )  dz 2Jri Z Res (2.2) f(~,), 
1 

where the sum on the right-hand side extends over all the singularities of the function 
f inside the contour l. In all of this circle of ideas only poles were considered, that 
is, singularities of the type (z - z0)-". 

In an 1846 paper Cauchy investigated multivalued functions (for example, inte- 
grals of the type f ~ dz) and showed that in these cases the integrals depend on the 
path of integration and that no simple expression like the residue formula exists. His 
work on multivalued functions has a preliminary character and is extremely vague. 
The most prominent of the French mathematicians who investigated multivalued func- 
tions was Victor Alexandre Puiseux (1820-1883), who published a long memoir in 
the Journal de Math~matiques Pures etAppliqu~es, published by J. Liouville (1809- 
1882). He studied the algebraic equation f (u,  z) = 0, where f is a polynomial in u 
and z. In this article he clarified the difference between poles and branch points (~,'~) 
and introduced the concept of an essential singularity, that is, a point where the Lau- 
rent series expansion contains an infinite number of negative terms (for example, the 
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function e 1/z at z = 0). These ideas were independently investigated by Weierstrass. 
Puiseux carefully examined the situation that arises when branch points occur and 
showed in particular that the series expansion in a neighborhood of a branch point 
contains fractional powers. These papers are the most significant results published 
before Riemann's dissertation. 

Did Riemann know Cauchy's work? E.T. Bell (1883-1960), a well-known histo- 
rian of mathematics, recounts in his book Men of Mathematics a story of the famous 
British mathematician James Joseph Sylvester (1814-1897). While in Germany in the 
1890s Sylvester made the acquaintance of a former (unnamed) student of Riemann, 
who told him the following story: Having seen in the library at G6ttingen University 
the latest issues of Comptes Rendus with Cauchy's papers, Riemann disappeared with 
them for several weeks; when he reappeared, he said, "This is the beginning of new 
mathematics." It is difficult to vouch for the authenticity of this (undocumented) story. 
However, convincing evidence that Riemann knew of Cauchy's work is provided by 
a list of the books borrowed by students in the library of G6ttingen University during 
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the years 1846-1847) Riemann was an avid reader and among the books that he 
borrowed were many of Cauchy's works. 

This historical excursion has been undertaken only for the sake of a clearer appre- 
ciation of Riemann's originality and the significance of his results. To appreciate any 
scholarly work, especially if it is of exceptional quality, it is of interest to evaluate the 
scholarly advance made by the author. For this purpose, it is necessary to determine 
what information he had at his disposal 

Riemann's dissertation consists of three parts. The first part is devoted to the in- 
vestigation of geometric properties of analytic functions. Riemann gives a geometric 
interpretation of the concept of analyticity. For this purpose he introduces two com- 
plex planes simultaneously--the domain of the argument z and the domain of the 

1See the paper of Neuenschwander, E., "Uber die Wechselwirkungen zwischen der franz6sischen 
Schule und Riemann und Weierstrass. Eine ~bersicht mit zwei Quellenstudien," Archive for History of 
Exact Sciences 24 (1981), 221-225, where a facsimile of one page of this list can be found. 
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value w of the function. One can then formulate the condition for analyticity as fol- 
lows: Choose any point z0 in the z-plane and let its image be w0 = f(zo). Consider 
two neighborhoods of the points z0 and Wo, U(zo) and V(wo), sufficiently small that 
the function f(z) maps the neighborhood U onto V in a one-to-one manner. Now 
take two curves Y1 and Y2 in U that pass through z0 and also take the two curves Y1 
and Y2 through w0 that correspond under f to Y1 and Y2 respectively. Denote the 
angle between I11 and I12 and the angle between Y1 and Y2 by 7z and ~p respectively. 
We shall consider these angles to be oriented, that is, we are considering the angle of 
rotation from Y1 to Y2 and from Y1 to Y2. 

A mapping of a neighborhood of a point z that preserves angles and orientation 
is called conformal. The following proposition is generally true: The condition for 
analyticity (holomorphy) of a function is equivalent to the condition for conformality. 
This assertion fails only at points z where the derivative if(z) is zero. As Riemann 
himself observed, conformal mappings had previously been studied by Gauss in his 
"General solution of the problem of mapping a given part of a surface in such a way 
that on the infinitesimal level the image is similar to the region mapped," printed 
in 1822 in Astronomische Abhandlungen. Gauss had encountered this problem in 
connection with his investigations in geodesy. It arises every time one attempts to 
map from a globe to an ordinary geographic map. It is noteworthy that Joseph-Louis 
Lagrange (1736-1813) obtained the Cauchy-Riemann conditions in 1779, also in 
connection with the solution to a cartographic problem. He considered the global 
problem of conformally mapping a plane onto itself and obtained, naturally, the same 
equations. If Lagrange had realized that any surface is locally similar to a plane, he 
would have obtained at once the condition for conformal equivalence of two surfaces. 

Riemann began his work where Gauss left off. He based his study of analytic 
functions on the property of conformality, and this allowed him to avoid the use of 
explicit analytic formulas. The property of conformality was known already to Gauss. 
Gauss' Astronomische Abhandlungen is the only reference cited in Riemann's disser- 
tation, and it provided the initial premises from which he began his own investigations. 
Riemann's basic task was to consider the behavior of an analytic function, not on the 
plane, but rather (as Riemann himself put it) " . . .  on a surface spread over the plane." 
In his general examination of this question, Riemann turned to analysis situs. The 
basic idea is that the behavior of an analytic function on any surface can be reduced 
to a study of a function on a simply connected domain and the determination of the 
jumps of the function at branch cuts. For this purpose he conducted a thorough but 
essentially topological investigation that led to the first results on Riemann surfaces. 
We shall examine them below in greater detail. 

The connectivity of a surface is defined by using a system of cuts. It is, in fact, 
a combinatorial definition--the germ of the future theory of homology. A surface is 
called simply connected if any cut divides it into separate parts. If this is not the case, 
the surface is said to be multiconnected. Riemann's work considers primarily surfaces 
with a boundary. He showed that the connectivity of a surface is independent of the 
system of cuts made. Specifically, if the number of cuts of a certain system equals n, 
and the number of simply connected pieces is m, then the difference n - m does not 
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depend on the system of cuts and will be one and the same for the given figure. This 
number he called the order of connectivity. For example, in the case of a disk, it equals 
- 1 ;  in the case of a ring, 0. His definition of the degree of connectivity differs from 
the modern definition by 1. Riemann also applied the concept of connectivity to a 
two-dimensional surface and established a relation between the order of connectivity 
of the surface and the order of connectivity of the boundary. The number of separate 
boundary curves of an n-connected surface is either equal to n or less than it by an 
even number. 

After these preparations Riemann turned to the basic problem: Determine the be- 
havior of an analytic function having given singularities on a multiconnected surface. 
He solved it first for a simply connected domain and then, using a system of cuts 
and computing the jumps of the function at the cuts, reduced the general case to this 
special one. 

In the case of a simply connected domain, he proved two basic theorems. The 
first theorem states that if a function u (x, y) satisfies the equation of Pierre-Simon 
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Figure 2.1: A page from the draft of Riemann's lectures on algebraic differentials 
(Vorlesungen uber die allgemeine theorie der integrale algebraischer Differentialien, 
1861-1862). Here he considered the problem of the zeros of theta-functions. Courtesy 
of the archives of GOttingen University. 

Laplace (1749-1827) in a domain, that is, if the function is harmonic, 

O2u O2u 
AU = ~X2 -'~--- = 0 ' 0 y 2  

then the function u has derivatives of all orders and, moreover, is the real part of an 
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Figure 2.2: A page from the draft of Riemann's manuscript "Theorie der Abel'schen 
Functionen, 1857. Courtesy of the archives of GOttb~gen University. 

analytic function f (z). If these conditions are met, the function f is determined by u 
uniquely up to the addition of a purely imaginary constant term. 

The second theorem--the existence theorem--says that inside a simply connected 
domain (it suffices to consider the case of the disk) there exists one and only one 
function u that is continuous up to and including the boundary, has given boundary 
values, and satisfies the Laplace equation inside the domain. 
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PIERRE-SIMON LAPLACE 

For a proof of this second theorem, Riemann used a variational principle. Con- 
sider the integral in the disk 

f f  ,ox, , Oy ; 
dx dy, (2.3) 

where the following conditions are placed on the function u: u is continuous up to the 
boundary, where it takes on the boundary value u0, and inside the domain the integral 
(2.3) is finite. Consider the class of all functions u satisfying these conditions. Since 
the integral (2.3) is everywhere positive, it follows that there is a lower bound on 
its values. Suppose this bound is attained at a certain function u ---- fi having the 
given boundary value u0. This means that the integral (2.3) attains its minimum when 
u ---- ft. The variation of the integral (2.3) must be equal to zero for a minimum: 

f f  ,ox, +\OyJ dxdy=O. 

This condition is equivalent to the equation Au = O. Thus, assuming that a solution 



20 Riemann, Topology, and Physics 

of the variational problem exists, we immediately find a suitable harmonic function, 
and consequently, an analytic function. 

Riemann made extensive use of this method of solution, which he later called 
the "Dirichlet principle." He first became acquainted with it through the lectures of 
Dirichlet, although the method was known already to Gauss, George Green (1793- 
1841), and William Thomson (Lord Kelvin, 1824-1907). The Dirichlet principle 
contains dangerous pitfalls that are not immediately obvious. 

One cannot assert a priori that when a variational integral has a lower or upper 
bound, there exists an actual function where it attains that extremum. Take, for exam- 
ple, the following problem from the calculus of variations: Find a curve of  the shortest 
length among all smooth curves (having continuous curvature) connecting two points 
A and B and passing through a third point C, assumed to be noncollinear with A 
and B. It is easy to see that the length of the broken line A C B  will be the greatest 
lower bound for the lengths of the curves under consideration. On the other hand, it 
is obvious that the polygonal line A C B  has a corner at the point C and therefore does 
not belong to the class of curves having continuous curvature. 

The debate associated with the Dirichlet principle played an important role in the 
history of mathematics and also to some extent in Riemann's life, and we will return 
to it later. We have not yet finished with his doctoral dissertation, which contained 
several results of the first order of importance, such as the Laurent series expansion 
for functions having poles and branch points. Probably the best-known result is Rie- 
mann's theorem on conformal mapping of simply connected domains: Any simply 
connected domain of the complex plane having at least two boundary points can be 
conformally mapped onto the unit disk. This is the most difficult part of the general 
theory of conformal equivalence of simply connected domains. Two other cases occur 
in the theorem: 1) the complex plane and 2) the complex plane augmented by an in- 
finitely distant point (the extended complex plane). The interpretation of the extended 
complex plane in the form of a sphere (the Riemann sphere) was obtained later and 
was cited in his lectures. 

Thus we see that Riemann's dissertation follows Gauss' geometric ideas and par- 
allels the works of mathematicians of the French school. It provides a construction 
of the theory of functions of a complex variable which is significantly more complete 
than Cauchy's and takes a more general perspective. The concluding remarks in the 
dissertation show that the general nature of the problem of analytic functions on arbi- 
trary multiconnected domains was already clear to Riemann. Moreover--and this is 
especially noteworthy--all these results arise as part of a general picture. He wrote, 

The reason and the immediate purpose for the introduction of complex 
quantities into mathematics lie in the theory of uniform relations between 
variable quantities which are expressed by simple mathematical formu- 
las. Using these relations in an extended sense, by giving complex values 
to the variable quantities involved, we discover in them a hidden harmony 
and regularity that would otherwise remain hidden. 2 

2 Riemann, B. Gesammelte Mathematische Werke, pp. 37-38. 
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Gauss, who was generally rather cold toward young people, wrote a laudatory 
appraisal, noting that this work attested to the outstanding independence of its au- 
thor and far exceeded the requirements posed for a doctoral dissertation. This is no 
small tribute. There is no doubt Gauss was already in possession of many of the con- 
cepts Riemann introduced. For example, Gauss' correspondence with the astronomer 
Friedrich Wilhelm Bessel (1784-1846), published at the end of the last century, shows 
that by 1811 he had obtained the formula 

1 fdZ=l 
2zri z 

l 

where I is a circle enclosing the origin. Acting on the principle of "Nil actum repu- 
tans si quid supperesset agendum" (consider nothing complete if anything remains 
undone), he published almost nothing of his mathematical works, especially in the 
latter years, but in letters and conversations with friends he complained more than 
once that young people were publishing papers containing results that he had obtained 
years earlier. 



Chapter 3 

Privatdozent at G6ttingen 

"To see a world in a grain o f  sand 
And heaven in a wild flower, 
Hold infinity in the palm of  your hand 
And eternity in an hour." 

WILLIAM BLAKE 

A D V A N C E M E N T  the career ladder at German universities up  w a s  a complex 
and lengthy process, and obtaining a doctoral degree was only one of the manda- 

tory steps. The system of acquiring degrees and titles influenced in no small de- 
gree the development of  science, and we will look at it in somewhat greater detail. 
Nineteenth-century German science strongly favored candidates who had completed 
a university education rather than those who had graduated from the technical insti- 
tutes (Hochschulen). Only those who had graduated from a university could occupy a 
teaching position and later become a professor. After obtaining a doctoral degree, one 
could aspire to the post of lecturer (Privatdozent). In order to do this it was necessary 
to present to the university council a Habilitationsschrift, a competitive composition 
including original work, which was presented as a small course of lectures on any 
special branch of knowledge. In addition, one had to deliver a Habilitationsvortrag, a 
probationary report on a narrow topic chosen by the university council. After this, if 
the outcome was favorable, one obtained the right to teach at the university. 

A Privatdozent received no salary from the university but was paid fees by the 
students who attended his course. One could remain a lecturer for an indefinite period; 
everything depended on a lecturer's success and (theoretically) his talent. As soon as a 
post opened for an assistant professorship at any university, a lecturer could compete 
for the post. No special examination was required at this point. The pinnacle of 
a career was the title of full professor occupying a chair. Both assistant and full 
professors received state salaries, but there was a significant difference in both salary 
and status between the two levels. 

Although such a system of academic distinctions had a few drawbacks, it also had 
obvious merits, such as the presence of  a large number of highly qualified specialists 

23 
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(the well-known American expert on university education, J. Hart, called lecturers 
the life blood of German universities). The relatively small number of professorial 
vacancies insured a high level of teaching and what is especially important--a cer- 
tain geographical uniformity in the distribution of the ablest scholars. Of course, for 
each specialty there were especially desirable posts. The University of Berlin almost 
always ranked first, but in comparison with Paris and St. Petersburg, Berlin exerted 
comparatively little centripetal force. 

In December of 1853, after two years of intense work in the most diverse fields of 
mathematics, Riemann presented his Habilitationsschrift "Uber die Darstellbarkeit 
einer Function durch eine trigonometrische Reihe," ("On the representability of a 
function by a trigonometric series") to the Council of G6ttingen University. It was 
printed only after his death, in the 1867 volume of the A bhandlungen der Kfniglichen 
Gesellschaft der Wissenschaften zu G6ttingen. It is a masterfully written work with a 
long historical introduction and a thorough citation of sources. (These citations were 
provided to Riemann by Dirichlet; see Riemann's 1852 letter to his father, p. 578 of 
his Werke.) 

Trigonometric series arose simultaneously in two different areas of mathematics 
during the eighteenth century: in astronomy, where the movement of the planets can 
be naturally represented by means of periodic functions, and in partial differential 
equations, in the problem of the vibrating string. Although the two areas sometimes 
present identical mathematical problems, there seem to be no parallels in the works 
of the most eminent mathematicians in these two fields. Astronomers represented 
any function they needed by trigonometric series, without much discussion, while 
specialists on differential equations made this representation a topic of heated debate. 
Even when one and the same author worked in both fields, for example, Euler or 
d'Alembert, the approach to trigonometric series in astronomical investigations was 
completely different from that used to discuss the vibrating string. The solution of the 
equation of the string 

1 02u oq2U 
- -  - -  ( 3 . 1 )  

C 2 ~ t  2 OX 2 

gave rise to a level of polemic never before seen in the history of mathematics. 
D'Alembert, Euler, Daniel Bernoulli (1700-1782), and Lagrange were deeply in- 
volved in the dispute. 

In 1746 d'Alembert published his first work on the solution of Eq. (3.1) for a 
string with fixed ends in the form u(x, t) = ~(x - ct) + ~p(x + ct). It gave rise 
to other questions: What class of functions can be a solution of the equation of the 
vibrating string? Can one represent these functions as trigonometric series?, etc. 
The argument, in which any two participants had diametrically opposed points of 
view, raged for thirty years. Despite the passions so aroused, the debate was in no 
way resolved and, in fact, could not have been settled at the time. The question of 
representing functions by a trigonometric series is a difficult problem in analysis and 
could not be solved in the eighteenth century, when the very concepts of continuity 
and differentiability were far from clear. 

The next fundamental step was made by the French mathematician Jean-Baptiste 
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JEAN-BAPTISTE JOSEPH FOURIER 

Joseph Fourier (1768-1830). In his classic work The Analy t ic  Theory o f  Heat  (1822) 
he obtained a series expansion for an arbitrary function f (Fourier series): 

f ( x )  = ~-~an sinnx + b,, cosnx, 

where 

a,  = --  f ( x )  sin nx  dx ,  
7r  rr 

b, = --  f (x ) cos nx  dx .  
7 r  ;r 

It should be noted that Fourier series had appeared earlier in the works of C. Clairaut 
(1713-1765) and Euler, but in the thick of the discussions the correct conclusions 
were not drawn from them. It is curious that Fourier's first work was presented to 
the Paris Academy in 1807, but was rejected by Academicians Lagrange, Laplace, 
and Legendre. As a sort of consolation prize it was recommended to Fourier that he 
develop his ideas and offer a work in the competition for the Academy's grand prize. 
The theory of heat was the subject of the prize in 1812. Although Fourier did in fact 
receive the prize, the work was nonetheless considered insufficiently rigorous and too 
inconclusive to be published in the Academy's M~moires.  Only in 1824, after Fourier 
had become secretary of the Academy, was he able to get his work published in the 
M~moires.  
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The functions that Fourier investigated arose out of physical problems, essentially 
from solving the heat equation: 

au k: 0:u 02u a2ua 
Ot \Ox  2 + - -  + _ _  = Oy2 Oz 2/" 

In particular, they were sufficiently smooth. Fourier himself did not attempt to find 
general conditions for the validity of the series expansion. The first paper devoted 
to this problem, by Dirichlet, was published in 1829 in Crelle's Journal, the leading 
German mathematics journal. Dirichlet found several conditions that were sufficient 
for the representation of periodic functions by a trigonometric series. 

This probably is all the information at the disposal of Riemann---or science gen- 
e ra l ly -when Riemann began working on the problem. Because of the chaos that 
reigned at the time in the fundamental questions of integrability and convergence (the 
concept of uniform convergence did not yet exist), and also the vagueness of the basic 
concepts, Riemann began his investigation by determining a necessary and sufficient 
condition for the existence of an integral--the condition of Riemann integrability. 
In particular, he introduced his celebrated example of a function having an infinite 
number of discontinuities that is nevertheless integrable. The Riemann function R ( x )  

is defined on the segment [0, 1] by the formula: 

1 i fx  is rational of the form p 
R(x )  = q q 

0 if x is irrational. 

This function is discontinuous at rational points and continuous at irrational ones. The 
second part of Riemann's Habilitationsschrift is devoted directly to the problem of 
representing functions by a trigonometric series. Riemann emphasized the distinction 
by the form in which he posed the problem. 

While preceding papers have shown that if a function possesses certain 
properties, it can be represented by a Fourier series, we pose the reverse 
question: I f  a function can be represented by a trigonometric series, what 
can one say about its behavior? 1 

In this subject Riemann not only proved several remarkable theorems, he also (more 
importantly) discussed the theoretical problems of the theory of trigonometric series 
and suggested new approaches to solving them. His ideas and methods exerted deci- 
sive influence on the whole subject of trigonometric series in the subsequent decades. 
Here is a brief list of the results of this section of his paper. 

1. He obtained a necessary condition for a (Riemann-)integrable function to be 
representable by a trigonometric series: 

1 See Riemann's Habilitationsschrift in Gesammelte Mathematische Werke. 
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Riemann's theorem. The Fourier coefficients of any integrable function an, bn 
tend to zero as n ---> oc. 

This theorem was later extended by Henri Lebesgue (1875-1941) to the class 
of Lebesgue-integrable functions. 

2. He constructed a method of generalized summation of trigonometric series. 
The following question, posed by Riemann, is fundamental for the theory of 
trigonometric series: Given a trigonometric series T 

T (x ) = ao + Z (an cosnx + bn sin nx) = Ao/2 + 
n = ]  

is T (x ) the Fourier series of a function f (x ) ? 

In particular the series T(x)  may be convergent, and then it is natural to ask 
whether it is the Fourier series of its sum. The answer is demonstrably negative 
unless some restrictive hypotheses are imposed, since the sum of the series is 
not necessarily integrable. 

3. Riemann had the exceptionally original idea of solving the following problem, 
which is crucial in this circle of problems: I f  T (x) converges and the coefficients 
an and bn tend to zero, then the series 

An(x) do(x) (3.2) (1/2)A~ - Z n 2 - -  

converges absolutely and uniformly to a continuous sum. 

The series (3.2) is obtained from the series T(x) by integrating formally twice. 
Georg Cantor (1845-1918) later showed that the assumption that the coefficients an 
and bn tend to zero is a consequence of the assumption that the series converges. 
Leopold Kronecker (1823-1891) showed that the absolute convergence of the series 
(3.2) can be proved without this assumption. 

Riemann's basic idea was to use the function do(x) and regard the series T(x) 
as a "generalized second derivative." We denote the corresponding second difference 
quotient by Rh (x): 

A22hdo(x) ~ / s i nnh \2  
Rh(X) -- 4h 2 -- ao + ~... Z n ( x ) ~ )  (3.3) 

n = l  

where A~hdo(x) = do(x + h) + do(x - h) - 2do(x). 
The series (3.3) is formally equal to the series T (X) when h = 0. Riemann's idea 

was to define the sum of T(x)  using the series (3.3) in cases when T(x)  diverges. 
If the series T(x)  is the Fourier series of a function f ( x ) ,  it is Riemann-summable 
almost everywhere, in particular at every point of continuity of f ( x ) .  The idea of 
considering a generalized second derivative is worth noting from a modern point of 
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view. The generalized second derivative may exist when the ordinary second deriva- 
tive (and even the first derivative) fails to exist. By this fundamental expansion of  the 
class of functions that could be studied Riemann at once approached the concept of 
distributions. It is precisely in the context of  the theory of distributions, which arose 
in the mid-twentieth century, that it was possible to solve the fundamental problems 
of the theory of Fourier series and integrals. 

In order to appreciate Riemann's results fully, one must remember that serious 
investigations on the foundations of analysis had only just begun. A naive "physical" 
picture that regarded each continuous function as differentiable and each bounded 
function as integrable was quite widespread. The example of a continuous, nowhere 
differentiable function, constructed by Weierstrass in 1872, caused a sensation. The 
Weierstrass function is also defined using a trigonometric series: 

f (x)  = ~ b" cos(an:rrx), 

where a is an odd integer, 0 < b < 1, and ab > 1 + (3zr/2). This series converges 
uniformly and defines a continuous function that is not differentiable at even one 
point. 

Problems of trigonometric series attracted the attention of many of the major 
mathematicians of the late nineteenth and early twentieth centuries such as Lebesgue 
and Cantor. The study of problems of representing functions by Fourier series and the 
Fourier integral led to the discovery of unusual properties of functions and the origins 
of measure theory and the Lebesgue integral. 

As sometimes happens in science, what at one stage does not appear even to 
be a question later becomes a complicated problem and still later receives an unex- 
pected solution. Operations that are not valid in one class of functions become valid 
when the class of functions and the operations themselves are expanded. Thus, the 
naive assurance (mentioned above) that had existed in operations with functions and 
integrals mentioned earlier received a reliable foundation. In reality each bounded 
(measurable) function is integrable, not in the sense of Riemann, but in the sense of 
Lebesgue. Continuous functions can be differentiated when regarded as distributions 
(the 6-function of Paul Dirac (1902-1984) arises at this point). 

For most mathematicians the development of this idea would have become an en- 
tire life's work, but other ideas were already inspiring Riemann. Several problems 
attracted him at once. For a long time he had wondered about the connection be- 
tween electricity, light, and magnetism. The recent experiments of Rudolf Kohlrausch 
(1809-1858) on the change of residual charge in a Leyden jar interested him. He 
believed he could explain this phenomenon, but first he had to submit his Habilita- 
tionsvortrag. He prepared three topics for this lecture. Two were associated with his 
investigations on electricity, while a third was on geometry. To his surprise, at Gauss' 
recommendation, the council chose his work on geometry. On June 10, 1854, Rie- 
mann read his probationary lecture, "Uber die Hypothesen, welche der Geometrie zu 
Grunde liegen" (On the hypotheses that lie at the foundations of geometry). 2 

2See Riemann's Habilitationsvortrag "(0ber die Hypothesen, welche der Geometrie zu Grunde 
liegen" in Gesammelte Mathematische Werke. 
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What is space? Does geometry have a relationship to experience? These ques- 
tions bring us to a complex world where mathematics collides with physics and, more 
dangerously, with philosophy. The purely mathematical concept of a space of n di- 
mensions arises in many works and is a natural topic for study in the problem of 
describing systems with many degrees of freedom. For example, the kinetic theory of 
gases, operating with a phase space of  6N dimensions (N is the number of  molecules 
in a one-gram molecular mass, known as the Avogadro number: N "-~ 6 �9 1023). The 

problem of geodesic (shortest) lines on a multidimensional ellipsoid are examples 

where n-dimensional spaces arise. 

It is striking that even though Lagrange had introduced the concept of  four-di- 
mensional space (where time t is added to three spatial coordinates) in the eighteenth 
century, it was only as a convenient means for solving problems in mechanics. The 
study of the geometry of n-dimensional spaces proceeded very slowly, ma in ly - - a s  
Felix Klein authoritatively asser ts--because of "the expected objections [by philoso- 
phers]" that an n-dimensional space is nonsense. 3 The discovery of non-Euclidean 
geometry in 1829 by Nikolai Ivanovich Lobachevskii (1792-1856), in 1831 by J~nos 
B61yai (1802-1860), and still earlier by Gauss 4 provided still more sources of contro- 
versy and misunderstanding. 

The prevailing conviction of  the scientific community that Euclidean geometry 
reflected reality was largely based on purely intuitive philosophical notions (for ex- 
ample, on the very influential Kantian idea of the a priori existence of  the concept of 
space) and was not shared by the founders of  non-Euclidean geometry. However the 
latter understood the full complexity and relativity of any assertion of the hypothesis 
of the "non-Euclidean" character of physical space. There is some very inconsistent 
literature on this subject connected with Gauss. One can say with assurance only that 
the famous measurements of the angles of the triangle formed by the three peaks of 
Brocken, Hohehagen, and Inselberg in the Harz Mountains, which Gauss made in 
1816 during the geodetic survey of the Kingdom of Hannover, were not related to 
any test of the "Euclidean" nature of the geometry of physical space. A glance at 
his famous "Disquisitiones genera les . . . "  (1827) distinctly shows his belief that the 
measurement of the angles of a triangle on the surface of the earth cannot exhibit any 
deviation from two right angles within the limits of error of measurement. On this 
point he referred to the results of  the geodetic measurement of 1816, in which the 
difference of the angle sum from 180 ~ was 14.85348 seconds of arc. 5 

The possibility of measuring angles on an astronomical scale was considered by 
Lobachevskii. In the first part of his foundational work "On the laws of geometry" 

3Klein, E Development of Mathematics, p. 156. 
4Gauss' correspondence, published at the end of the nineteenth century, shows that, beginning 

roughly in 1794, he seriously worked on geometric problems and mastered many concepts later de- 
veloped by Lobachevskii (1792-1856) and B61yai (1802-1860). 

5It is instructive to note that a direct reading of the classics of science enables the student to avoid 
repeating widely held but sometimes utterly false beliefs. This remark applies to the present author. 
In the first edition, relying on the authority of Klein, I wrote that Gauss looked for an experimental 
determination of the geometry that holds in nature, by finding the magnitude of the difference between 
the angles in Brocken-Hohenhagen-Inselberg triangle and rr. 
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N I K O L A I  I V A N O V I C H  L O B A C H E V S K I 1  

(1829) he estimated the difference from rr radians for the sum of the angles of a tri- 
angle formed by a fixed star and two points of the earth's orbit. In doing this he made 
use of the data on the parallax of two stars: Keida (in the constellation Eridanus) 
and Sirius. In both cases the deviation from zr was significantly less than the pos- 
sible errors of measurement. For example, in the triangle formed with the star Keida 

3 
(Y~ otiJ - 0.000372. shown that such scale it is still 

\ 

Having T/" thereby even o n  a 

i=1 
impossible to exhibit a single "true" geometry, he mentioned the constellations of  An- 
dromeda, Orion, and others, to which the distances are many times greater than "the 
distances from our earth to the fixed stars." Lobachevskii concluded his discussion of  
this section with cautious but penetrating reasoning on the relations between different 

geometries and real space and among the various geometries themselves: 

. . .  The new (non-Euclidean) geometry, whose foundation has been laid 

here, even if it does not exist in nature, nevertheless may exist in our 
imagination; and, while remaining unused for actual measurements, it 
opens a new, extensive field for the mutual application of geometry and 
analysis. 
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In studying the work of  the founders of non-Euclidean geometry, one sees how much 
more profound and substantive was their approach to the problem of the relation be- 
tween geometry and experience than the views of the professional philosophers. 

We owe our understanding of the difference between geometry as a logical struc- 
ture and as a reflection of  physical reality to the efforts of many of the greatest minds. 
In this field the name of  Riemann stands on a level with those of Albert Einstein 
(1879-1955) and Henri Poincar6 (1854-1912). 

Riemann's Habilitationsvortrag consists of  two parts: In the first he considered 
the purely mathematical problem of defining n-dimensional space with a given metric 
and studied several properties of an object that he called a Mannigfaltigkeit (mani- 
fold). He posed the following question: How does one define the distance between 
two points o f  a manifold, irrespective o f  the space in which it lies? This intrinsic defi- 
nition of  the distance gives a metric on the manifold. At the same time, he considered 
only those manifolds in which a sufficiently small neighborhood of a point has the 
metric of the ordinary Euclidean space: 

n 

ds 2 = )--~(dxt) 2. (3.4) 
1=1 

In the general case he proposed that the metric be given by a positive definite quadratic 
form, where the square of  the element of length is 

ds 2 ---- gjk dx  j dx k 

(summation on repeating indices is assumed). Spaces in which one can introduce 
such a metric have come to be called "Riemannian." Riemannian spaces possess a se- 
ries of remarkable properties, but we shall discuss only the properties that stimulated 
Riemann himself to undertake their study. 

The simplest example of a Riemannian space is a surface. It was apparently Euler 
who first noted that a space can be described not only by the coordinates of  the space 
in which it lies but also by introducing them directly onto the space itself. However, 
it was Gauss who proposed a detailed study of the intrinsic properties of the surface, 
that is, properties that are independent of the way in which it is imbedded in any 
particular space. It is interesting to note that he obtained his remarkable results on 
differential geometry in 1816, during a period of active practical work. On assign- 
ment by the government, he conducted thorough geodetic surveys in the kingdom 
of Hannover. Various aspects of this practical activity led Gauss to two of his most 
important achievements in pure scholarship: the method of  the least squares and his 
paper "Disquisitiones generales circa superficies curvas" (General investigations of 
curved surfaces, 1827). 

The extremely important concept of total (Gaussian) curvature is also due to him. 
Consider a sufficiently small piece (a small neighborhood) U of a surface E.  At each 
point of U belonging to the surface E one can assign a normal l - - a  unit vector normal 
to the surface. The set of values of the vector l will be a certain domain V on the unit 
sphere S 2. It is called the spherical image of the domain U. The Gaussian curvature 
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CARL FRIEDRICH GAUSS 

K at a point is the limit of the ratio of the area of V to the area of U as U shrinks to 
the point. The theorem that Gauss himself called his theorema egregium asserts that 
the curvature K does not change if the surface is bent. 

By a bending of a space is meant a transformation that does not change the dis- 
tances between points or the angles between curves that lie on the surface. Surfaces 

are divided into three classes, depending on the sign of the curvature K:  surfaces of 
positive curvature (for example, a sphere), surfaces of zero curvature (a plane or a 
torus), and surfaces with negative curvature (for example, a doughnut with two holes 
or a one-sheeted hyperboloid). (See Fig. 9.2, Part II.) From the theorema egregium 
one sees immediately that a fiat surface cannot be bent in such a way as to obtain the 
surface of  a sphere, but it can be bent into a cylinder or even a cone. 

Another property of the Gaussian curvature, which can also be taken as a defi- 

nition, is as follows. Consider a triangle on the surface E formed by three lines of  
shortest length (geodesic lines). Then the integral of the curvature (with respect to the 
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element of area of  the triangle) equals 

= f K.s = Ot 1 "q-Or 2 " ~ O l  3 - -  J r ,  S 

where etl, az, and a3 are the angles between the geodesic lines. This second definition 
is more convenient for Riemann's generalization to multidimensional space. 

In his work Riemann introduced the concept of curvature in a two-dimensional 
direction. Take any point x0 in an n-dimensional Riemannian space M" and consider 
a two-dimensional surface formed by geodesic lines, having at the point x0 tangent 
vectors lying in a given plane. This surface has a curvature K called the curvature in 
this two-dimensional direction. 

Riemann managed all this without a single formula. At the end of the first part of 
the work, he studied multidimensional spaces of constant curvature. 

His spaces of constant curvature arise from the physical requirement that "figures" 
can move in such spaces without expanding or contracting. In modern terms, one can 
explain them in the following way. Consider any three points in the space M n. Let 
us determine the distances between them, having chosen a fixed metric. If it is to be 
possible to move any such triangle as a rigid body in space, there must be a certain 
symmetry group that transforms the space and preserves the distance between points. 
For example, if we consider a space with the metric (3.4), we arrive at the usual 
Euclidean space R", where the curvature K equals zero. In this way, but by a more 
complex means, one can obtain a space of constant positive or negative curvature. It 
is remarkable that classical geometries are associated with each of the three types of 
spaces: elliptic (Riemannian) geometry with spaces of positive curvature, parabolic 
(Euclidean) geometry with spaces of zero curvature, and hyperbolic (Lobachevskian) 
geometry with spaces of negative curvature. 

In the second part of his lecture, Riemann turned to a discussion of the proper- 
ties of a real space that make it possible to single out, from among the infinite set 
of possible metrics, the one that applies to reality, that is, he essentially posed the 
question of the relationship between geometry and the real world. Here he examined 
two questions separately: First, what is the dimension o f  a space? Second, which 
geometry describes physical  space ? In discussing the first question, Riemann clearly 
pointed out that the notion of dimension current at the time assumed a concept of 
continuity. In reality, when we talk about a set consisting of a finite number of points, 
the only dimension that can be introduced for it is simply the number of points; but 
when the number of points is infinite, the situation changes. Actually, the concept 
of dimensionality received its full logical foundation only after the discovery of the 
theory of sets by Cantor. He showed that if continuity is omitted, then the concept of 
dimensionality loses all meaning. For example, one can establish a one-to-one corre- 
spondence between points of a straight line, a plane and (in general) a space of any 
finite number of dimensions. Only the additional requirement of  continuity allowed 
L.E.J. Brouwer (1881-1966) to prove the following fundamental theorem: There does 

not exist a one-to-one and continuous mapping with continuous inverse o f  a space M" 

onto M m (given n # m). If we assume, however, that the real world has dimensional- 



34 Riemann, Topology, and Physics 

ity, for example, three dimensions, then the question arises: Is it bounded or not? In 
other words, can one represent it the way we represent a closed two-dimensional sur- 
face in three-dimensional space (for example, a sphere), or is it an unbounded surface 
of the type of a plane? 

The answer to this last question is highly nontrivial even for two-dimensional 
manifolds, and depends strongly on the sign of the Gaussian curvature of the surface. 
For manifolds with K > 0 the answer is positive. The situation with manifolds 
of negative curvature is much more complicated. For example, it follows from a 
famous theorem of David Hilbert (1862-1943) that the hyperbolic plane cannot be 
isometrically imbedded in three-dimensional Euclidean space as a regular complete 
surface. 

The physical insight with which Riemann posed the question is striking in its 
prophetic vision. 

The question of the validity of geometry in the infinitely small is re- 
lated to the question of the internal basis of metric relationships of the 
space. For this question, which can certainly be considered in the theory 
of space, the above remark is applicable, that is, that a discrete manifold 
contains an intrinsic metric relation, while this must be added for the con- 
tinuous case. Therefore, either the reality which is the basis for the space 
must form a discrete manifold or the basis for the metric relation must be 
sought elsewhere in the connecting forces. 

The answer to this question can only be found in that, as experience 
has proven, one proceeds from phenomena, in which Newton laid the 
foundation, to facts that are not explicable on the basis of the previous 
knowledge, and which lead to a gradual reworking of the theory. The 
investigations that we have carried out here, and which proceed from 
general concepts, can only help prevent this work from being hindered 
by limitation of the concepts, and prevent progress in the recognition of 
the relationship of things from being restricted by traditional prejudices. 

This leads to the realm of another science, into the area of physics, 
which the nature of today's occasion does not allow us to enter. 

Not until sixty years later, after the creation of the general theory of relativity 
by Einstein, was Riemann's idea of defining a metric by external gravitational forces 
given spectacular confirmation. In Einstein's equations, the metric properties of a 
space (its curvature) are determined by a gravitational field. 

Riemann's Habilitationsvortrag is nowadays regarded as one of the most remark- 
able works in the history of all science, not only mathematics. Therefore, it may be 
interesting to trace the route over which Riemann's ideas gained acceptance. 

In Riemann's audience, only Gauss was able to appreciate the depth of Riemann's 
thoughts. Dedekind, a well known mathematician who was not only a close friend but 
also Riemann's first biographer, describes Gauss' impressions: The lecture exceeded 
all his expectations and greatly surprised him. Returning to the faculty meeting, he 



Privatdozent at G6ttingen 35 

GEORG CANTOR 

spoke with the greatest praise and rare enthusiasm to Wilhelm Weber about the pro- 
fundity of the thoughts Riemann had presented. Nevertheless, Riemann's paper was 
not published during his lifetime and apparently remained unknown to the majority 
of major mathematicians. For example, there is no mention of it in the two inductions 
of Riemann into the Berlin Academy of Sciences. 

A report of the lecture published by Dedekind in 1868 in the journal G6ttingerAb- 
handlungen 6 aroused interest. However, it analyzed primarily the purely mathemati- 
cal part of the work associated with Riemannian geometry. As a result of the work of 
a whole constellation of outstanding mathematicians, including E. Christoffel (1829- 
1900), E. Beltrami (1835-1900), L. Bianchi (1856-1928), G. Ricci (1853-1925), 
T. Levi-Civit?a (1873-1941), E. Cartan (1869-1951), and many others, Riemannian 
geometry became an independent science, closely associated with algebra, topology, 
and complex analysis. It became the mathematical foundation of the general theory 
of relativity. 

6Abhandlungen der KOniglichen Gesellschafi der Wissenschaften zu GOttingen, 13. 
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In discussing this brilliant work, I would like to emphasize again that Riemann 
drew on concrete physical problems in the posing of his sometimes quite abstract 
mathematical research. Riemann developed the analytic apparatus of Riemannian ge- 
ometry while solving a problem for a competition set by the eminent Paris Academy. 
Although not a word in this paper mentions his GiSttingen lecture "Uber die Hypothe- 
sen... ," the epigraph that preceded the article speaks for itself: Et his principis via 
sternitur ad majora (And with these beginnings the path extends to greater things). 
The problem posed was as follows: To determine what the thermal state of an arbi- 
trary solid body must be in order that a system of curves that are isotherms at a given 
instant shall remain isotherms at all times, that is, so that the temperature at a point 
can be expressed as a function of time and two auxiliary variables. 

In view of a certain incompleteness and brevity of the proof, the work was not 
awarded a prize by the Academy and remained unpublished until 1876, when it ap- 
peared in his collected works, published by Heinrich Weber (1842-1913) and 
Dedekind. After publication of the "Paris paper," it became clear that Riemann had 
been in possession of machinery sufficiently advanced for the construction of what 
is now called Riemannian geometry. In particular, this paper contained the defini- 
tion of the curvature tensor and a formula for total (Gaussian) curvature in the case 
of n-dimensional space and even the definition of connection coefficients, introduced 
independently in 1869 by Christoffel (Christoffel symbols), and their connection with 
a Riemannian metric in the case of a space of constant curvature. 

While the part of the "Hypothesen" devoted to Riemannian geometry was ac- 
cepted right away and received immediate development, especially in the works of the 
Italian school, Riemann's ideas on physics remained completely uncomprehended. It 
is likely that only H. Helmholtz (1821-1894) in 1868 and the remarkable British 
mathematician William Kingdon Clifford (1845-1879) in 1870 paid attention to this 
latter side of Riemann's work. The idea of connecting a metric with measurement by 
means of a system of rigid bodies was a familiar one to Helmholtz. As for Clifford, 
delivering a paper entitled "On the Space Theory of Matter" before the Cambridge 
Philosophical Society on February 21, 1870, he said: 

I hold: 1) that small portions of space are, in fact, of a nature analogous 
to little hills on a surface that is on the average fiat; namely, that the 
ordinary laws of geometry are not valid in them; 2) that this property of 
being curved or distorted is constantly being passed on from one portion 
of space to another after the manner of a wave; 3) that this variation of 
the curvature of space is what really happens in the phenomenon that 
we call the motion of matter, whether ponderable or ethereal; 4) that 
in the physical world nothing else takes place but this variation, subject 
(possibly) to the law of continuity. 7 

7From William Kingdon Clifford, Mathematical Papers, Robert Tucker, ed., London: Macmillan 
and Co., 1882. 
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It is remarkable that it was Clifford who first appreciated Riemann's idea. Clif- 
ford died at an even younger age than Riemann, but left an important imprint on 
science. His scholarly interests were connected with the study of multidimensional 
algebraic and geometric structures. In algebra he continued the investigations on 
hypercomplex numbers, which had been begun by W.R. Hamilton (1805-1865), 
H.G. Grassmann (1809-1877), and A. Cayley (1821-1895). He constructed an ex- 
ample of a noncommutative but associative multidimensional algebra (the Clifford 
algebra). For many years, his results remained important for the physics of studying 
elementary particles with half-integer spin (particles obeying the Fermi-Dirac statis- 
tics). In geometry he developed the work of C. yon Staudt (1798-1867), Cayley, and 
Klein on the foundations of geometry (the relationship between non-Euclidean and 
projective geometries). He also obtained important results on Riemann surfaces (a 
model in the form of a bounded surface). 

Clifford's paper in Cambridge had little influence on the subsequent development 
of gravitational theory. Later on, Einstein came to appreciate Clifford's work; his 
general theory of relativity decided the question of the nature of gravity by using the 
geometry of space, basing itself on Riemannian spaces of constant curvature. 

In recent years, an interest in the geometry of small distances has arisen under 
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the influence of new attempts to unite quantum and gravitational phenomena; that is, 
the theory of  a quantum fluctuation of geometry (of a metric)---geometrodynamics. 
The basic features of this theory, whose main proponent is the American physicist 
J. Wheeler, are as follows. The metric of a Riemannian space defines the structure of 
the space only at large distances; for small distances, on the order of the Planck scale 
(that is, at distances L ~ 10 -33 cm, L = hG/c, where h is Planck's constant, G is 
the gravitational constant and c is the speed of light), the metric is not determined but 
instead fluctuates. Thus, we come to a consideration of the indeterminate structure 
of space: space appears "smooth" only at first glance. On the microscopic level its 
structure is pebbly---Clifford hills. Not only does the geometry of the space fluctuate, 
but so does its topology: If we observe closely, we ought to see not only little hills 
but also holes. Thus, the equation of quantum theory of gravitation is analogous 
to the Schr6dinger equation in quantum mechanics; the amplitudes of probability of 
transition from one geometry to another ought to play a role. A natural question arises: 
Beyond general aesthetic dissatisfaction with the gulf between gravitational theory 
and quantum theory, what physical phenomena force us to consider such fantastic 
possibilities? These phenomena, which we can only mention in passing, connect the 
world of elementary particles with the whole universe. 
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One striking consequence of the general theory of relativity is a prediction of the 
formation of black holes as a result of gravitational collapse. The formation of black 
holes, however, requires such a gigantic compression of matter (density on the order 
of 1093 g/cm 3) that quantum effects become important. The most striking discovery 
of recent years is the one made by the British physicist S. Hawking, who proved that a 
black hole is a source of stationary thermal radiation (quantum vaporization of black 
holes--Hawking's effect). Hawking also obtained important quantitative results in 
fluctuation-geometric theory (in Wheeler's picturesque phrase, the space-time theory 
of foam). 

The preceding account has endeavored to give only a minimal idea of the influ- 
ence of Riemann's work on the subsequent development of science. However, I would 
also like to take note of yet another feature of his work---an aspect that, in fact, leaps 
to the attention of the modern reader. This is the clear boundary that Riemann estab- 
lished between results that could be rigorously proved and hypotheses that could not 
be verified on the basis of the resources of the science of his day. For example, in 
connection with the introduction of the concept of curvature, he clearly distinguished 
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the finite, but unbounded space of positive curvature from unbounded space with neg- 
ative curvature. The importance of this distinction can be seen in the theory of rela- 
tivity, where the existence of bounded models of Friedman type leads to collapse; in 
the case of open models, collapse does not occur. In contrast to the generations of 
philosophers who discussed the topic, "Was there a beginning, and will there be an 
end of the world?" Riemann realized perfectly well that the choice of  an adequate 
model of reality could be obtained only from astronomical observations (for example, 
a measurement of the density of intergalactic gas) which at the time were impossible 
to carry out. Therefore, he wrote: 

For an understanding of Nature, questions about the infinitely large are 
idle questions. It is different, however, with questions about the infinitely 
small. Our knowledge of their causal relations depends essentially on the 
precision with which we succeed in tracing phenomena on the infinitesi- 
mal level. 8 

8Riemann, B. Gesammelte Mathematische Werke, p. 285. 
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Another of Riemann's ideas remains as yet undeveloped, namely that the conti- 
nuity of space breaks down at hyper-small distances, but we already know the path 
along which Riemann suggests seeking an answer. 

In 1854 Riemann finally obtained the right to teach. Not long before, in Septem- 
ber, he had read a paper "On the laws of distribution of static electricity" at a session 
of the G6ttingen Society of Scientists and Physicians. In a letter to his father Rie- 
mann recalled, among other things, that "the fact that I spoke at a scientific meeting 
was useful for my lectures." In October he set to work on his lectures on partial dif- 
ferential equations. Riemann's letters to his beloved father are full of stories of the 
difficulties he encountered. Although only eight students altogether attended his lec- 
tures, Riemann was completely happy. Gradually he overcame his native shyness and 
established a rapport with his audience. 



Chapter 4 

Riemann and Dirichlet 

"Gentlemen, we do not have time for Gaussian rigor." 
CARL JACOBI 

R IEMANN'S scholarly achievements were greeted rather coolly by his colleagues 
�9 and, more importantly, by the university administration. The successor of Gauss 

(who had died in 1855) was Riemann's old friend Dirichlet. It was Dirichlet who, 
with great difficulty, succeeded in obtaining a small paid post in the department for 
Riemann. Not until November of 1857 did Riemann obtain the position of assistant 
professor. The years of Riemann's collaboration with Dirichlet (1855-1859) were by 
far his most productive. Illness had not yet undermined his strength, and the oppor- 
tunity to pursue his own investigations was all that Riemann required for complete 
happiness. 

In 1857, the memoir "Theorie der Abel'schen Functionen" appeared in the fifty- 
fourth volume of the Journal fiir die reine und angewandte Mathematik. It contained 
work that had been done in the period 1851-1856 and expounded in lectures of 1855- 
1856. Although only three people attended these lectures, one of them was Dedekind. 
Thanks to the efforts of the latter (and to H. Weber), Riemann's unpublished works 
were found after his death and issued in a volume of his collected works, revealing 
the splendor of his talent to mathematicians. Riemann's work on Abelian functions 
developed the theme of his doctoral dissertation. His highly original and fruitful idea 
was that multivalued functions (for example, ~fz) could be represented as single- 
valued functions, not over the complex plane but rather over a special (Riemann) 
surface defined by the singularities of the function. 

To give the reader an appreciation of the beauty of this construction we shall begin 
by constructing the Riemann surface for the two simplest cases 

w = 4 7  (4.1) 

w = ~ / ( z  - a l ) ( z  - a2)(z  - a3). (4.2)  

43 
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Figure 4.1: A simply connected Riemann surface. 

1) The Riemann surface of the function w = ~r We choose some point z0 = 
roeie~176 then w = ~ ' o e  iep~ Given a circuit of the origin of the coordinates along a 
closed contour (~p = ~b0 -t- 2:r), the function w changes sign: w = - ~ - o e  leo~ Thus, 
for one and the same point z0 = roe iep~ ( t o  which we return after a circuit of  the origin) 
we obtain two different values of  w - - t h e  function is two-valued. To get around this 
difficulty, we cut the complex z-plane along the positive part of  the real axis. As 
long as w(z) traverses paths that do not intersect this cut, we have two single-valued 
branches of w(z): 

IV(Z) = ~rreiO/2, when 0 < ~b < 2:r; 

w(z) = - , r  e/2 when 2rr < ~b < 4rr. 

Now we take two copies of the z-plane with cuts (Fig. 4.1). Each cut has two edges: 
an upper and a lower one (imagine that the cut has a certain width). We indicate the 
edge of the upper quadrant with a positive sign and the lower with a negative. In 
order to continue a branch of w(z) across the cut, it is necessary that its sign on the 
different edges coincide. Now we glue the two sheets together: the upper edge of the 
first sheet to the lower edge of the second and, correspondingly, the lower edge of  the 

first sheet to the upper edge of the second. Given a passage across the cut, we go from 
one sheet to the other. The following remarkable situation results: a moving point that 

begins at point z0 on the first sheet and makes a circuit about the origin along a closed 
contour passes over to the second sheet, and at point z0 the function w will equal 

-~/ ' /~.  Thus, on each sheet, we obtain a single value of the function w. Riemann's  
basic idea is as follows: one can consider a multivalued function on a complex plane 
as single-valued on the corresponding multisheeted Riemann surface. Unfortunately, 

such gluing without intersection cannot be done in three dimensional space, but one 
can prove that such a Riemann surface is topologically equivalent to a sphere. By 

using stereographic projection one can map each sheet onto a sphere (the Riemann 
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Figure 4.2: A doubly connected Riemann surface. 

sphere). A cut on the plane becomes a cut along the meridian (Fig. 4.1b). We move 
the two edges of  the cut so that we obtain a hemisphere (Fig. 4.1c). Having carried out 
a similar operation with the second sheet and having glued together both hemispheres, 
observing the law of signs, we obtain a new sphere (Fig. 4.1d). The same result can 
be reached by gluing together the corresponding edges of two sheets. Because these 
operations are topologically equivalent, the Riemann surface of  the function w(z)  is 
homeomorphic to the sphere) 

2) Construction of  the Riemann surface of more complex functions, for example, 
to = ~ / ( Z  - -  a l ) ( Z  - -  a 2 ) ( z  - -  a 3 ) .  On the sphere we make cuts from al to a2 and an 
additional cut from a3 to a4, where the point a4 is adjoined at infinity (Fig. 4.2a); 
we separate these cuts, stretch them out (Fig. 4.2b) and, observing the law of signs, 
glue the two pieces together (Fig. 4.2c). This surface is topologically equivalent to a 
torus (Fig. 4.2d) or to a sphere with a handle, which is the same thing. In general the 
Riemann surface of the function w = x/(z - a l )  " . "  ( z  - a 2 g )  is a sphere with g - 1 
"handles." If the number of  points ai is odd, we adjoin another point ai+l = ~X~. 
The number of handles represents an important topological invariant: the genus of 
the surface. Two surfaces are topologically inequivalent if they have different genera. 
Riemann explicitly recognized the topological nature of his constructions. His work 
and the subsequent work of  Poincar6, became the foundation of topology. 

It should be noted that Riemann confined himself to representing a Riemann sur- 
face as a collection of  sheets with a certain rule gluing them together. The fact 
that the Riemann surface of  an algebraic function (that is, a function of the type 
f (zl ,  zz) = Pn(zl)z'~ + . . .  + Po(zl),  where the coefficients Pk(zl)  . . . .  are polynomi- 
als in Zl) is topologically equivalent to an arbitrary orientable closed two-dimensional 
surface was clarified later, basically thanks to Klein's 1881/1882 paper "(Iber Rie- 
manns Theorie der algebraischen Funktionen und ihrer Integrale" (On Riemann's the- 

lln topology a one-to-one continuous mapping having a continuous inverse is called a homeomor- 
phism. 
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ory of algebraic functions and their integrals). 

Riemann obtained an important formula linking the number of sheets n, the num- 
ber of branch points b (with corresponding multiplicities), and the genus of the Rie- 

mann surface of an algebraic function: 

b 
= - - n + 1. (4.3) 

2 

This formula shows that the genus of the hyperelliptic surface 

w = V/(Z -- a l ) ' ' '  (z -- a2g) 

equals g - 1 (the number of sheets is n = 2; the branch points a l  . . . . .  a2g all have 
multiplicity 1). One can construct a one-to-one continuous mapping of any closed 
orientable two-dimensional surface onto a sphere with a certain number of "handles." 
From this it follows that any closed orientable surface is the Riemann surface of an 
algebraic function. 

We emphasize that Riemann surfaces are orientable. This means that a Riemann 
surface cannot be a M6bius strip, a projective plane, a Klein bottle, or any other 
nonorientable surface. The orientability of a Riemann surface follows from the fact 
that a complex structure exists on it: a Riemann surface can be represented as a com- 
plex curve in two-dimensional complex space {(w, z) ~ C 2 : w = f(z)}.  The proof 
of this fact is not complicated but requires the introduction of new concepts, and we 
shall not give the details at this point. 

The introduction of Riemann surfaces greatly advances the study of  algebraic 
functions and their integrals----the theory of Abelian integrals. This theory is the sub- 
ject of study in the classic works of Abel  and Jacobi. It owes its origin to the work 
of Jakob and Johann Bernoulli (1657-1705 and 1667-1748 respectively), Euler, and 
Legendre; it is one of the classical areas of analysis. Integrals that could not be ex- 
pressed in elementary functions arose in the seventeenth century in solving the prob- 
lem of calculating the arc length of an ellipse. For that reason such integrals came to 
be called elliptic. The problem of inverting elliptic integrals was solved by Abel  and 
Jacobi. This problem is stated as follows: Given an integral of the form 

~ " du  (4.4) 

where Pk ( u ) is a polynomial of the third or fourth degree, find the function u in terms 
ofz. Elliptic integrals are associated with the to rus - -a  Riemann surface of genus 1. It 

turns out that, in this case, one can represent the function u as a single-valued doubly 

periodic function of z. 
Abel,  however, had considered much more general algebraic integrals than ellip- 

tic. He showed that a finite sum of  m integrals of the type 

f Xl,Yl f Xra,ym 
R(x, y ) d x  + . . .  + R(x, y )dx ,  

a xo.Yo a xo,Yo 
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(where R(x, y) is a rational function and x and y satisfy a relationship f ( x ,  y) = 0, 
where f ( x ,  y) is a polynomial) can be expressed by only g such integrals and a certain 
number of  rational and logarithmic terms. Here g, the genus of the algebraic function, 
does not depend on m (for hyperelliptic integrals f ( x ,  y) = y2 _ Pk(x), and the 
genus of the algebraic function is the already familiar genus of the Riemann surface). 
If the integral involves the square root of a polynomial of fifth degree or higher (a 
hyperelliptic integral), so that the genus will be larger than 1, there will be two or 
more upper limits of integration in the sum of the integrals, and hence one cannot 
expect any simple inversion such as occurs for elliptic integrals. Abel himself did not 
pose the inversion problem in the general case. Jacobi had the idea of supplementing 
a single hyperelliptic integral by others of the same kind so as to obtain a number of 
equations equal to the number of upper limits. The resulting problem, posed in 1831, 
was known as the Jacobi inversion problem. Although Jacobi had some success in 
solving the problem of inversion in the case of  hyperelliptic integrals, it was clear that 
new ideas were needed for a complete solution. 
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Abel 's  theorem makes it possible to reduce the study of integrals of arbitrary 
algebraic functions--Abelian integrals--to several special cases (depending on the 
type of singularities), for example, we can consider integrals for which logarithmic 
terms are absent, and the like. We see that in general the inversion requires the study 
of multivalued functions on an arbitrary Riemann surface. 

The honor of solving this problem belongs to Riemann. He began his investiga- 
tion with the construction of a general theory of multivalued analytic functions on a 
Riemann surface. The basic method used by Riemann was already contained in his 
doctoral dissertation. He showed first that it is possible, using a system of cuts, to 
convert a multiply connected domain into a simply connected one and, second, hav- 
ing determined the behavior of a function during a passage across the cuts (jumps), 
to reduce the problem to the study of single-valued functions with a given type of 
singularity. 

Riemann succeeded in showing that the existence of multivalued functions with 
a given type of singularities depends on the topology of the Riemann surfaces. Con- 
sider, for example, the following Abelian integral: 

w = R(u, z) dz, (4.5) 

where u and z are related by a polynomial equation f (u ,  z) = 0. The integrand is 
called an Abelian differential and the function R(u, z) is an Abelian function. 

One can pose the following question: Do there exist nonconstant Abelian func- 
tions having no poles on a given Riemann surface? (The integrals corresponding to 
such functions are called integrals of  the first kind). That such functions must be 
multivalued follows from a theorem of J. Liouville (1809-1882), stating that a single- 
valued analytic function without singularities (poles) on a closed Riemann surface is 
constant. Riemann obtained the following result: On a surface of genus g, there exist 
g linearly independent integrals of the first kind. (It follows from this, for example, 
that on a sphere there are no regular Abelian functions.) 

Riemann solved an analogous problem for Abelian functions that approach infin- 
ity at a finite number of points. Here the problem is significantly more complicated. 
For example, consider the problem of the existence of Abelian differentials of  the 
second kind, that is, having a representation 

(a_.~ ak ) + . . . + - f f  +q~(z) d z =  f ( z ) d z  

at every point (where ~b (z) is a holomorphic function). It is impossible to prescribe 
completely arbitrary poles for a a meromorphic function f (z) whose differential is an 
Abelian differential of the second kind. It follows from Liouville's theorem, that the 
function f ( z )  must have at least one pole. 

Riemann succeeded in obtaining a most important result, now known as Rie- 
mann's  inequality: The number r of linearly independent meromorphic functions with 
poles of order not greater than nk at m distinct points Pk, (k = 1 . . . . .  m) is not less 
than ~ nk - g + 1, where g is the genus of the surface. 
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In 1864 Gustav Roch (1839-1866), a student of Riemann who also died at an 
early age, succeeded in strengthening this result. It turns out that 

r = E n k - g + l + i [ a ] ,  

where i [a] is the number of linearly independent differentials with zeros at the points 
Pk of order at least nk and having no poles on the Riemann surface. This is the famous 
Riemann-Roch theorem. At the present time numerous multidimensional generaliza- 
tions of the Riemann-Roch theorem play an important role in various branches of  
algebraic geometry, analysis, and topology. 

Another discovery that Riemann made while studying Abelian functions is con- 
nected with the fine structure of Riemann surfaces. We have repeatedly stressed the 
topological background of Riemann's research, but it turns out that there exists a 
whole class of transformations that preserve the genus of a surface and, consequently 
its topology, but which lead to finer distinctions. We are talking about birational (Cre- 
mona) transformations. 

Consider the surface 
f (w ,  z) = 0. (4.6) 

If to 1 = RI(//),  z)  and zl = R2(w, z) are rational functions and the inverse transfor- 
mation also is given by rational functions, then the function f (w ,  z) leads to a new 
function F(wl, Zl). The corresponding surfaces f (w ,  z) = 0 and F(Wl, Zl) = 0 are 
said to be birationally equivalent. A necessary condition for birational equivalence of 
two surfaces is that they have the same genus, but this condition is far from sufficient. 

It turns out that among Riemann surfaces of  genus g > 1 there exists a (3g - 3)- 
dimensional family of birationally inequivalent Riemann surfaces. For g = 1, the 
family of birationally inequivalent Riemann surfaces has dimension 1, but for g = 0 
(a sphere), there are no birational invariants. It is interesting to note that this number 
corresponds to the number of conformally inequivalent Riemann surfaces. If we turn 
again to algebraic equations, we obtain the following result: Algebraic equations of 
the type of Eq. (4.6) having genus g depend on 3g - 3 complex parameters. These 
parameters are called the moduli of the algebraic curve (or the Riemann surface). The 
number 3g - 3 defines the dimension of the space of moduli of the space of confor- 
mally inequivalent Riemann surfaces. A more detailed description of this space--for 
example, the introduction of a metric in i t -- is  a very complex problem. It was par- 
tially solved only in the early 1940s. In the concluding part of the article, Riemann 
gave a general solution to the problem of inversion of Abelian integrals defined on a 
surface of  genus g. 

To this end he perfected the theory of multivariable 0-functions on Riemann sur- 
faces, which generalize Jacobi's elliptic 0-functions. (These functions had been in- 
troduced in 1847 by Adolf  G6pel (1812-1847) and Johann Georg Rosenhain (1816- 
1887).) The dimension of  the space of 0-functions is determined by the genus of 
the Riemann surface. The basic concepts of the theory of 0-functions introduced by 
Riemann have remained unchanged down to the present and constitute the foundation 
of the whole modern theory of 0-functions, which are a component of the theory of 
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complex and algebraic varieties. It suffices to mention the condition for convergence 
of 0-series, that the real part of the period matrix of the Abelian differentials (the 
"Riemann matrix") be negative-definite, or the condition for a complex torus to be 
algebraic--the Riemann-Frobenius condition. 

But, in a manner typical of all of Riemann's work, the introduction of general 
structures was not an end in itself for him. He immediately applied the apparatus 
of 0-functions to solve the Jacobi inversion problem, reducing it to the problem of 
determining the zeros of the 0-functions. The answer depends on conditions under 
which a 0-function is not identically zero on the Riemann surface. In the "Theorie der 
Abel'schen Functionen" and its sequel "(3ber das Verschwinden der 0-Functionen" 
(1865) Riemann obtained a necessary and sufficient condition for the vanishing of 0- 
functions that gave a complete solution of the problem of inverting Abelian integrals. 

In proving the fundamental theorem on the vanishing of 0-functions Riemann 
derived a number of important identities for 0-functions--the so-called Riemann O- 
relations--as a secondary result. These relations play a vital role in modern research 
in the theory of Riemann surfaces, in particular in solving the Schottky problem. This 
famous problem, which originated with Riemann, was clearly formulated by the Ger- 
man mathematician E Schottky (1851-1935) in 1903 and consists of the following: 
Suppose given matrices of a Riemann surface of genus g, which form a family of com- 
plex matrices depending on 3g - 3 parameters, g > 1 (the moduli of the surface), 
while the complete family of Riemann matrices, which satisfy the Riemann-Frobenius 

condition, form a family of complex symmetric matrices Bij of dimension g(g + 1) 
2 

What conditions must be imposed on the Riemann matrices Bij so that they are the 
period matrices of Abelian differentials of a certain Riemann surface of genus g ? The 
answer is quite simple when g _< 3; in this case any matrix B is the period matrix 
of a corresponding Riemann surface. But when g _> 4, the answer is highly nontriv- 
ial (the dimension of the space of matrices B increases considerably faster than the 
dimension of the space of moduli). A full and effective solution of Schottky's prob- 
lem was obtained comparatively recently by T. Shiota (1986) and involves remarkable 
achievements in the theory of nonlinear evolution equations. For more details on these 
equations see the chapter "Soliton Particles" below. 

The fate of this remarkable work is highly surprising. Weierstrass, Riemann's 
chief rival in developing the theory of Abelian functions, was deeply disturbed by 
these results. As Klein reported: 

. . .  when Weierstrass submitted his first treatise on general Abelian func- 
tions to the Berlin Academy in 1857, Riemann's paper on the same theme 
appeared in Crelle, Volume 54. It contained so many new and unexpected 
ideas that Weierstrass withdrew his paper and in fact published no more. 2 

Considering that Weierstrass had his own solution to the Jacobi inversion problem 
for general hyperelliptic integrals and had obtained a number of highly interesting 
relationships for general elliptic functions, his scholarly fastidiousness is completely 

2Klein, E Development of Mathematics, p. 264. 
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unprecedented. For a number of years, this work of Riemann was considered his most 
significant contribution to mathematics. But Weierstrass soon pointed out a serious 
gap in it, which placed all of Riemann's fundamental results in jeopardy. 

The fact is that, already in his doctoral dissertation, and especially in the paper 
"Theory of Abelian functions," in order to assert the existence of a required function 
with a given type of singularities, Riemann used the variational principle we have al- 
ready discussed--the Dirichlet principle, which assumes the solution of a variational 
minimization problem. Weierstrass expressed doubts about this principle to Riemann, 
and (after Riemann's death) he showed that there were similar problems in the calcu- 
lus of variations that have no solution. Thus the particular result required by Riemann 
would need a special proof, which Riemann had not given. 

Klein describes the reaction to Weierstrass criticism as follows: 

The majority of  mathematicians turned away from Riemann...  Riemann 
had been of  a quite different opinion. He fully recognized the justice and 
correctness of Weierstrass's critique; but he said, as Weierstrass once told 
me, "that he appealed to the Dirichlet principle only as a convenient tool 
that was close at hand, and that his existence theorems are still correct. ''3 

31bid., pp. 247-248. 
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Weierstrass himself was also convinced of this last assertion. He encouraged his stu- 
dent Hermann Amandus Schwarz (1843-1921) to make a thorough study of 
Riemann's existence theorem and to seek other proofs, which Schwarz succeeded in 
doing. 

In 1869, immediately after Weierstrass's critical remarks appeared in print, 
Schwarz proved the existence of a solution of the Dirichlet problem without using 
the variational method. His alternative method consisted of the following: he first 
solved the Dirichlet problem for the disk, using the Poisson integral to construct a 
harmonic function u (x, y) in the disk, taking prescribed values on the boundary. Then 
he showed how to pass to an arbitrary domain obtained as the union of a finite number 
of disks. Another remarkably interesting proof, proposed by Poincar6, was based on 
potential theory--the method of balayage (sweeping out). 

Riemann's "mistake" had yet another remarkably useful consequence. It stimu- 
lated specialists in algebraic geometry to find a purely algebraic proof of Riemann's 
theorem, specifically the Riemann-Roch theorem. The outstanding work of Rudolph 
Friedrich Alfred Clebsch (1833-1872), who invented the term "genus of a surface," 
is in this area. Paul Gordan (1837-1912), Max Noether (1844-1921), and finally (in 
1899) Hilbert succeeded in giving a proof of the variational principle. It is difficult 
to recall another example in the history of nineteenth-century mathematics when the 
search for a rigorous proof led to such productive results. 

Physicists were completely convinced by Riemann's work. As evidence of this 
fact we cite an excerpt from a paper of A. Sommerfeld (1868-1951), "Klein, Riemann 
and Mathematical Physics:" 

Riemann's dissertation was at first strange to his mathematician contem- 
poraries, who reviewed it as if it were a book published for the family. 
The fact that it was closer in its way of reasoning to physics than to 
mathematics is attested to by a story of one of my colleagues. Once he 
spent his vacation together with Helmholtz and Weierstrass. Weierstrass 
had taken Riemann's dissertation along on holiday in order to deal with 
what he felt was a complex work in quiet circumstances. Helmholtz did 
not understand what complications mathematical specialists could find in 
Riemann's work; for him Riemann's exposition was exceptionally clear. 

Why was Riemann's explanation so clear to physicists when it presented such difficul- 
ties to mathematicians? The reason is certainly not the obtuseness of mathematicians 
and the brilliance of physicists, but rather the different standards of proof demanded 
by the two professions. 

There exists a remarkable interpretation of the theory of functions on Riemann 
surfaces, which owes its origin to Helmholtz and which explains why physicists had 
such confidence in the validity of Riemann's results. One can interpret the theory of 
analytic functions on Riemann surfaces as a problem of physics. We shall show, in 
fact, that the theory of a stationary two-dimensional ideal incompressible fluid on a 
surface leads to the theory of analytic functions. 
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Consider a stationary flow of fluid U on the (x, y) plane. The velocity of  the flow 
at each point has an x-component P(x, y) and a y-component Q(x, y). Through a 
small rectangle with sides Ax, Ay, the following mass of  fluid flows in unit time (the 
density of  the fluid is constant and equal to 1): 

f0 f? AY{p(x+Ax, y+h) -P(x ,h+h)}dh+ {Q(x+l ,y+Ay)-Q(x+l ,y)}dl .  

(4.7) 
Approximating an arbitrary domain f2 by rectangles and applying Green's theorem, 
we deduce that the integral (4.7) is equal to 

f f ( ~ x  + ~ y ) d x d y .  (4.8) 

Since the fluid is incompressible and there are no sources or sinks in the domain f2, it 
follows that expression (4.8) is equal to zero. A stronger assertion is also valid: the 
divergence of the flow U equals zero: 

OP 0___QQ = 0. (4.9) div U = ~ + Oy 

The circulation of the flow along a curve C is defined to be the integral f P dx + 
Q dy. If this integral along any closed curve is equal to zero, the flow is called irrota- 
tional. For any simply connected domain this implies that the expression P dx + Q dy 
is the total differential of a function u(x, y), which in turn is harmonic. 

The function u(x, y) is called the velocity potential of the flow, a concept intro- 
duced by Helmholtz. The curves u(x, y) = const are called the equipotential lines, 
and the tangent to an equipotential line forms an angle ot with the x-axis such that 
t ana  = -(Ou/Ox)/(Ou/Oy) if Vu # 0. The velocity vector of the flow forms an 
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angle/3 with the x-axis, where tan ~8 = (Ou/Oy) / (Ou/Ox) ,  that is, the direction of the 
flow is orthogonal to the equipotential lines and points in the direction of most rapid 
decrease of the function u. 

Recall that a harmonic function u(x ,  y)  determines an analytic function f ( x ,  y )  = 

u + i v, where v, the harmonic  conjugate of the function u, is defined by the Cauchy-  
Riemann equations (see formula (2.1)). The function f ( z )  is called the comp lexpo -  

tential of the flow. The tangent to a curve v = const forms an angle y with the x-axis  

and 
Ov Ou 

g-;x ~ = tan/3, t a n y - -  ~ ---57. 
Oy Ox 

that is, the current u flows along the curve v = const. These curves are called stream- 

lines. The condition that (Ou/Ox) 2 + (Ou/Oy) 2 = 0 is equivalent to the condition that 

f ' ( z )  = 0. This implies that the streamlines are orthogonal to the equipotential lines, 
except when f ' ( z )  = O. 

This physical analogy provides a completely intuitive interpretation of the proper- 
ties of analytic functions. For example, if an analytic function f ( z )  has f ' ( z o )  = 0 at 
a point Zo, then the curves u = const and v = const no longer intersect at a right angle 

at the point Zo = Xo + iyo. Such points are called stationary points.  For example, for 
the function 

f (z) = ao + aez z 

the curves u = const and v = const intersect at an angle of 4" 
With equal success we can study arbitrary singularities of analytic functions. Let 

us consider a flow with potential f ( z )  whose derivative f ' ( z )  is a rational function, 
that is, its only singularities are poles (for example, (z - a0)-k). Then the function 
itself can be represented in a neighborhood of a singularity as 

f (z) = A log(z - z0) + A l ( z  - Zo) -a + . . .  + go(z), (4.10) 

where f (z) is a function without singularities. 
The singularities of the flow defined by the function f (z) can be constructed from 

the singularities of the flows defined by the individual terms of (4.10). Let us consider 

the behavior of the logarithmic term. We first suppose that A is a real number. We 
choose a disk of radius r about the point Zo : z = Zo + re  ir and set 

A log(z - zo) = u + iv .  

Separating the real and imaginary parts, we obtain u = A log r ,  v = Ago. The stream- 

lines v = const are rays emanating from the point z0, while the equipotential lines 
u = const are circles with center z0 (see Fig. 4.3). Thus, the point z0 is either a source 

(Fig. 4.3a) or a sink (Fig. 4.3b) for the flow, depending on the sign of A (the liquid 

either flows out of or into the point z0). If A is a purely imaginary number, we obtain 
the conjugate flow: A = i B ,  u = -Bgo ,  v = B l og r  for which the stream lines are 

circles. Such flows are called vortices. The direction of the motion (clockwise or 
counterclockwise) is determined by the sign of B. 
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Figure 4.3: A source (a) and a sink (b). 

We have thus obtained a remarkable result: The singularities of an analytic func- 
tion f (z) can be described in terms of the flow of a fluid with a certain number of 
sources, sinks, vortices, etc. Sommerfeld called this whole circle of ideas physical 
mathematics. As he said, "Here it is not mathematics serving the interests and prob- 
lems of physics, but rather physics inspiring and governing mathematical ideas." 

At the end of  his work on the theory of Abelian functions, in connection with a 
definition of Abelian integrals in terms of special functions (0-functions), Riemann 
wrote, "In order to carry out all of the reasoning necessary for this purpose, one must 
obviously rely on the further development of the theory of functions that satisfy linear 
differential equations with algebraic coefficients; I propose to take this up in the near 
future . . . .  ,4 To this subject he devoted two papers ("Two general theorems on linear 
differential equations with algebraic coefficients" and "On integrals of  a second-order 
linear differential equation in a neighborhod of a branch point"), which he wrote 
in 1857-1858, and a course of lectures on hypergeometric series. All of this was 
published after his death. 

In the first of these papers Riemann formulated the following problem from the 
theory of linear equations. Consider a system of homogeneous linear differential 
equations in the complex plane: 

dyi ~ 
d---z = A i j ( z ) y j ,  (4.11) 

j= l  

where the functions Aij  a r e  rational in z. Solutions of the system (4.11) turn out 
to be multivalued functions. The singularities of each solution of Eq. (4.11) are 
determined by the poles of the matrix A(z) : al . . . . .  ak, a0 = ec. The solution 
naturally changes after a circuit about a singularity. Riemann found a condition 
guaranteeing that the solution following a circuit of the singular point differs from 
the original one only by a constant matrix. If after a circuit about the point al the 
solution ~71 = (yH(z) . . . . .  y,l(z))  changes to the vector Y-~blimj)oj, while the so- 

lution r/i changes to ~ ' ( m )  Oij 17j after a circuit about the point am, then the matrices 

4From Riemann's "Theorie der Abel'schen Functionen." 
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B ~~ . . . . .  B (m) are nonsingular and satisfy Riemann's relation: 

B (~ x B ~ x . . .  x B (m) =- E, (4.12) 

where E is the identity matrix. 
In modern terminology relations of type (4.12) define a monodromy mapping, 

that is, a mapping 
Zrl(C \ {a0 . . . . .  am}) ~ GL(n ,  C), (4.13) 

where the order n of the group GL(n, C) is defined by the dimension of the funda- 
mental matrix of solutions of the system (4.11). We use the standard mathematical 
notation: GL(n, C) is the set of nonsingular complex n x n matrices, C is the extended 
complex plane, completed by adjoining the point a0 = oe (the "Riemann sphere"), 
and zq(X) is the fundamental group (the first homotopy group) of the set X. The 
matrices B {i) are called monodromy matrices and are generated by circuits about the 
points ai over simple loops (that is, closed paths containing no other singularities). 

In this same work, Riemann posed the converse problem: Given a system ofpoints 
ao . . . . .  am, does there always exist a system o f  equations o f  type (4.11) having given 
singularities and given transformation matrices satisfying (4.12) ? Riemann made a 
conjecture about the form of such equations, but did not produce a general proof. In 
his lectures on hypergeometric series, he considered the case, n = m = 2. 

Solutions of equations of type (4.11) constitute a very large class of functions, for 
example, the majority of the special functions of mathematical physics, in particular 
Bessel functions, hypergeometric functions, etc. Riemann's work remained unpub- 
lished for almost twenty years. Not knowing of Riemann's work, the well-known 
mathematician Lazarus Fuchs (1833-1902), a student of Weierstrass, set to work on 
this series of questions in 1865. He gave a detailed classification of the singular points 
of equations of type (4.11). The most important class of such equations with matrix 
A i j  ( z )  having simple poles as singularities came to be called Fuchsian equations, a 
term casually coined by Poincar6. 

Riemann's basic problem on the existence of equations with given monodromy 
matrices and singularities remained unsolved. It was considered so difficult that 
Hilbert included it as No. 21 in his famous list of "Mathematical Problems." 

In a speech delivered at the Second Mathematical Congress in Paris in 1900, 
Hilbert posed twenty-three problems, the solution of which he considered important 
for the development of mathematics. Of these problems, three were associated with 
Riemann's name. Problem No. 21, just mentioned, was one of them, as were No. 20 
(the proof of Dirichlet's variational principle, solved by Hilbert himself) and No. 8 
(associated with the "Riemann Hypothesis," which we will discuss later). 

Concerning Hilbert's Problem No. 21, the history of its solution is very engross- 
ing. Until recently it was believed that it had been solved in 1908 by the Serbian math- 
ematician J. Plemelj (1873-1967). Since no doubts had been raised about Plemelj's 
proof, research was directed mainly toward finding effective methods of construct- 
ing equations from a given monodromy group. In particular a detailed analysis of 
branch points had been carried out by the Russian mathematician Ivan Aleksandrovich 
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Lappo-Danilevskii (1896--1931), who developed the machinery of analytic functions 
of matrices specifically for the purpose. The Riemann problem was extended to an 
arbitrary Riemann surface by the German mathematician H. R6hrl, in 1957. But the 
most dramatic events occurred in 1989, when the Moscow mathematician A. Boli- 
bruch constructed a counterexample to Plemelj's theorem. It turned out that given 
any m > 3, any set of points al  . . . . .  am and any n > 3, there exists a represen- 
tation (4.13) not realized by any Fuchsian system. This remarkable result forced a 
re-examination of this entire area of differential equations. Additional interest in sys- 
tems of Fuchsian type arose as the result of a number of novel applications in modern 
theoretical physics, in particular, in two-dimensional conformal field theory, where 
correlation functions, the main object of study, satisfy a special system of differential 
equations of Fuchsian type. 

Interesting problems associated with equations of Fuchsian type arise in con- 
temporary theoretical physics. The basic object in describing the interaction of el- 
ementary particles--the scattering amplitude is an analytic function depending on 
the momentum of interacting particles and having singularities of quite complicated 
structure which are determined by the basic physical requirements. In complex space 
scattering amplitudes have not only poles but also branch points and even singularities 
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along entire curves--Landau singularities. The basic method of investigating scatter- 
ing amplitudes is a representation in the form of a series in perturbation theory. The 
computations are carried out by the method of Feynman diagrams. 

Generalizations of Riemann's methods play an important role in the problem of 
classifying singularities, since Feynman integrals and other important functions (for 
example, Dirac's well-known g-function) are generalized solutions of equations of 
Fuchsian type with analytic coefficients. 

The range of Riemann's scholarly interests was enormous. At the same period 
when he was carrying on these investigations, as his friend and biographer Dedekind 
showed, 

His thoughts again turned to natural philosophy, and one evening after 
a strenuous hike, he reached for Brewster's book The Life o f  Newton, 5 
and for a long time he talked admiringly about Newton's letter to Richard 
Bentley (1662-1742) in which Newton himself affirmed the impossibility 
of direct action at a distance. 6 

5Brewster, D. Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton, Edinburgh: Con- 
stable, 1855. 

6Riemann, B. Gesammelte Mathematische Werke, p. 553. 
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It is possible that this very remark by Newton suggested to Riemann the idea of in- 
troducing the concept of action at a distance in electrodynamics. In the paper "On 
the subject of electrodynamics," presented by Riemann on February 10, 1858 to the 
Royal G6ttingen Scientific Society, he formulated his result in the following words: 

.. .  I allow myself to make a remark which introduces a close connec- 
tion between the theory of electricity and magnetism and the theory of 
light and radiant heat. I have established that the electrodynamic action 
of galvanic flows can be explained by assuming that the action of elec- 
tric mass on other bodies does not occur instantaneously but propagates 
in its direction with constant speed (the speed of light within the limits 
of possible observational error). Given this assumption, the differential 
equation for the propagation of electric force is the same as the equation 
for the propagation of light and radiant heat. 7 

Riemann's result is striking when we reflect that this announcement was made more 
than seven years before the discovery of the famous Maxwell equations and in the 
city where Weber's law held absolute sway. According to this law, between moving 
particles with charges e and e', there is an instantaneous force: 

__2__1 / 
(c')2r 2 \ d t  } + (c')2r \ d t  2 } 

(c' is the Weber-Kohlrausch constant, equal to c~/"2, where c is the speed of light). 
Unfortunately, in his calculations there were several technical mistakes, as his audi- 
ence pointed out, especially Kohlrausch. Riemann evidently accepted the opinion of 
such a well-known experimenter and withdrew his paper. Like many other works by 
Riemann, it was published in his collected works after his death. 

Weber's law was considered the last word in science in Germany for a long 
time, until the remarkable experiments of Heinrich Hertz (1857-1894) confirmed 
Maxwell's theory. 

Despite his brilliant achievements, scientific recognition of Riemann proceeded 
very slowly. For that reason the support of Dirichlet and his younger colleague 
Dedekind provided great satisfaction to Riemann and strengthened his confidence in 
himself. 

Dirichlet's name is so often recalled along with that of Riemann that it is neces- 
sary to give at least a brief portrait of this multifaceted mathematician--after Gauss, 
Germany's leading mathematician of the first half of the nineteenth century. 

Peter Gustav Lejeune-Dirichlet, of French ancestry, was born in Germany. From 
the age of seventeen he lived in Paris where he became acquainted with Fourier. His 
first significant work, which we have already mentioned, was devoted to Fourier se- 
ries. In 1827 the eminent natural scientist Alexander von Humboldt (1769-1859) 
invited Dirichlet to Prussia. Von Humboldt, like his brother Wilhelm, possessed a 

71bid., p. 288. 
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rare combination of scholarly and administrative talents. Both brothers had an excep- 
tionally beneficial influence on the development of science in Germany. Alexander 
von Humboldt, being a personal friend of King Friedrich Wilhelm III, had great pres- 
tige in governmental circles and used his influence in the interests of science. The 
invitation to Dirichlet was by no means his only good deed. 

After two years as assistant professor at Breslau (now Wrodaw), Dirichlet moved 
to Berlin where he held posts consecutively as assistant professor, then associate pro- 
fessor, and finally, from 1839 on, as full professor. 

Dirichlet obtained first-class results in the most varied branches of mathemat- 
ics. Aside from the theorems already mentioned in the theory of functions and the 
Dirichlet principle, which played an outstanding heuristic role in the development of 
analysis, Dirichlet made a major contribution to number theory. 

Here we recall only his main achievement--the application of analytic methods 
for solving arithmetic problems. In the course of proving that a general arithmetic 
sequence contains an infinite set of prime numbers he introduced a series of the type 

an 
~(s) = H-';" 

Series of this form are called Dirichlet series, and a generalization of them plays 
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a most important role in the contemporary theory of numbers. One of Dirichlet's the- 
orems involves the distribution of prime numbers in arithmetic progressions. Despite 
its highly nontrivial proof, the formulation of Dirichlet's theorem is elementary: I f  
a and m are relatively prime positive integers, there exists an infinite set o f  prime 
numbers p, such that p =-- a (modm). 

Dirichlet's place in science is determined not only by his own scholarly attain- 
ments: his methods of teaching had a remarkably significant influence on German 
science and gradually on the whole world. Klein gave an excellent characterization 
of Dirichlet's style: 

He knew how to present his clear inner perceptions so convincingly in 
words alone that they seemed to proceed from their premises in a self- 
evident way. . .  For Dirichlet, teaching and research were inseparably bound 
together . . . .  8 

I will cite Klein once more in order to give an idea of Dirichlet as a person: 

His single goal, which he strove for with his whole being, was clear in- 
sight into the ideal coherence of mathematical thought, a goal that led 
him to renounce worldly influence and success. As is so often the fate 
of quiet men who seek and find satisfaction within themselves, it was his 
destiny to be surrounded by aggressive, strongly outwardly directed men. 
Dirichlet married into the rich and gifted Mendelssohn family: his wife 
was Rebekka, a sister of Felix Mendelssohn. Since this family was one of 
the most brilliant centers of social life in Berlin at that time, Frau Dirich- 
let was able to gather about her, in the brief G6ttingen period, all the 
people most interested in science and art, creating a lively and cultivated 
social life. It is said that Dirichlet took part in the social arrangements at 
his house only in a very reticent and retiring way. The incessant choppy 
sea of dazzling intellects around him could not in the least have corre- 
sponded to the deeper sea-swell of his own spirit. 9 

Dirichlet played an exceptional role in Riemann's life. In Dedekind's words, 
"From the very beginning he felt the liveliest personal attraction toward Riemann." 
In temperament as well as in his scientific interests, Dirichlet was remarkably close 
to Riemann. For Riemann in these years scientific support was not the only concern. 
He was forced to lead a very difficult life. Family misfortunes befell him: in 1857 a 
brother died, and soon after, a younger sister. These events, in addition to a serious 
nervous exhaustion brought on by intensive scholarly work, brought about depression. 
Only the help of Dirichlet, Dedekind, and his loving sisters, as well as a short trip to 
the mountains, brought Riemann back to a normal life. 

In the fall of 1858 the Italian mathematicians Enrico Betti (1823-1892), Felice 
Casorati (1835-1890), and Francesco Brioschi (1824-1897) came to G6ttingen, and 

8Klein, F. Development of Mathematics, pp. 87-88. 
91bid., p. 90. 
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Riemann became friends with them. They shared their results; in particular, Riemann 
communicated to Betti several facts from topology (the concept of connectivity for 
n-dimensional manifolds). Their interest in his work gave Riemann great satisfaction. 
The end of 1858 marked a long-awaited breakthrough in Riemann's life. His works 
at last became well-known and acknowledged. 



Chapter 5 

Full Professor in G6ttingen 

"Nothing stimulates great minds to work 
on enriching knowledge with such force 
as the posing of difficult but simultane- 
ously interesting problems." 

JOHANN BERNOULLI 

O N May 5, 1859 Dirichlet died after a serious illness. The government no longer 
wavered in its choice of  a successor. On July 30 of  that year Riemann was 

made a full professor of G6ttingen University. From that time on he occupied the 
chair earlier graced by Gauss and Dirichlet. 

On August 11 Riemann was elected a corresponding member of  the Berlin Acad-  
emy of Sciences in the "physical-mathematics class." The presentation, dated July 
4, 1859 and signed by Ernst Eduard Kummer (1810-1893), Carl Wilhelm Borchardt 

(1817-1880), and Weierstrass, reads in part: 

Prior to the appearance of his most recent work [the "Theory of Abelian 
functions"] Herr Riemann was almost unknown to mathematicians. This 
circumstance excuses somewhat the necessity of a more detailed exam- 
ination of his works as the basis of  our presentation. We considered it 
our duty to turn the attention of the Academy to our colleague whom we 
recommend not as a young talent who shows great promise, but rather as 
a fully mature and independent investigator in our area of science, whose 

progress he has promoted in significant measure. 

The papers on which Riemann's  election to the Academy was based were his 

doctoral dissertation and the "Theory of  Abelian functions." The paper "On the 

Hypotheses That Lie at the Foundations of Geometry" was not mentioned at all. Ei- 

ther it remained unknown to Berlin mathematicians or, more probably, it was not con- 
sidered a serious scientific work. This work also was not mentioned when Riemann 

was chosen as a foreign member of  the Berlin Academy. 
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In the same year (1859), Riemann received other academic distinctions as well. In 
November he became a corresponding member of the Bavarian Academy of Sciences 
(a full member from 1863 on) and a full member of the G6ttingen Scientific Society. 

The first duty a newly elected correspondent of the Berlin Academy had to fulfill, 
according to the Academy's Charter, was to send a report on his most recent work. 
Riemann chose his work on the distribution of prime numbers, "A topic perhaps, 
which will not be bereft of interest if one recalls that for a prolonged period of time it 
attracted the attention of Gauss and Dirichlet." The work of which the author spoke 
so modestly is entitled "On the number of primes less than a given magnitude." It 
brought forward problems that determined the development of several branches of 
mathematics for a whole century. 

In order to investigate the distribution of prime numbers, Euler had already studied 
the ~-function ~ (the notation is Riemann's). Euler had obtained the relation 

1 = H (  1 _ p - , ) - l .  (5.1) ~(s) = n-- 7 
n ~ l  

(The product extends over all prime numbers and the sum over all positive integers. 
Euler considered this relation for real s.) It follows immediately from this formula 
that the set of prime numbers is infinite (the series for ~(1) diverges). Mathematicians 
directed their efforts toward obtaining more precise information about the distribution 
of primes. 

Let us denote the number of primes less than a given number x by zr(x). There 
was already a conjecture, apparently enunciated by Euler himself, that as x --+ o0 

7r(x) 
- - - ~  1. (5 .2 )  x__.m.._ 

l o g x  

Despite the efforts of such talented mathematicians as Euler, Legendre, and Gauss, 
this conjecture had not been proved. Gauss, with his characteristic energy and love of 
computation, even constructed a table of the primes less than three million. 

The strongest results before the time of Riemann were obtained by the great Rus- 
sian mathematician Pafnutii L'vovich Chebyshev (1821-1894) and were published 
in 1854 in two papers: "Sur la fonction qui d6termine la totalit6 des nombres pre- 
miers inf&ieurs ~t une limit donn6e." (Mdmoires des savants dtrangers de l'Acaddmie 
Impdriale Scientifique de St. Pdtersbourg, VI (1848), pp. 1-19) and "M6moire sur les 
nombres premiers," (Ibid., VII (1850), pp. 17-33). Both papers were later reprinted 
in Liouville's Journal de Mathdmatiques Pures et Appliqudes, XVII (1852), pp. 341- 
365, 366-390. Chebyshev proved that 

Jr(x) 
A1 < 2 < A 2  

log x 

(where 0.992 < AI "< 1 and 1 < A2 < 1.105), but he did not prove that the limit 
exists. To prove the inequality, he used the function ~0(x)--the sum of the natural 
logarithms of all the primes not greater than x. 
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Riemann seems to have known of Chebyshev's work. 1 Nevertheless, there are no 
references to Chebyshev in the published text, which may be due both to the broad 
formulation of the problem and to his essentially different method of solving it. Rie- 
mann began his work with the Euler identity (5.1), but he considered the series (5.1) 
for complex values ors.  This was a completely new step in the study of the (-function. 

We shall follow the accepted modern terminology and call it the Riemann (-function. 
To prove the possibility of analytic continuation of ( to the whole complex plane 

Riemann introduced a functional equation for the (-function. 

Just how many important conclusions can be derived from analytic properties of 

this function can be seen if one looks only at the example of the problem of the 

llndirect, but rather convincing evidence for this assertion is given in the book of Edwards (Ed- 
wards, H.M. Riemann's Zeta Function, New York: Academic Press, 1974). Besides Riemann's close 
association with Dirichlet, who in turn was personally acquainted with Chebyshev and met him during 
Chebyshev's visit to Germany in 1852, it turns out that shortly after the publication of his famous papers 
Chebyshev's name appeared in Riemann's notebooks, which are preserved in the library of the Univer- 
sity of Gfttingen. A facsimile of the corresponding pages of Riemann's manuscript is printed in the 
book of Edwards. 
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distribution of primes. The law of distribution of primes (formula (5.2)) is equiv- 
alent to the assertion that the if-function of Riemann does not have complex zeros 
with real part equal to 1:~(1 + it) ~ 0 when t # 0. However, most remarkable 
is the assertion that all zeros of the function ~(s), with the exception of trivial ones 
( -2 ,  - 4  . . . . .  - 2 n  . . . .  ) lie on the straight line Res = 1/2. This is the famous Rie- 
mann hypothesis, which remains unproved at the present time. 

The majority of results in this work were rigorously substantiated by subsequent 
generations of mathematicians. In particular, Jacques Hadamard (1865-1963) and 
Charles de la Vall6e-Poussin (1866--1962) proved the validity of the formula for zr (x). 
But, as Hadamard himself wrote, "As for the properties for which he gave only a 
formula, it took me almost three decades before I could prove them, all except one." 
This last-mentioned property is, in fact, the Riemann hypothesis. Additional material 
connected with ~ (s) was found in Riemann's manuscripts preserved in the archives of 
G6ttingen University. Unfortunately, one cannot obtain any sort of proof on the basis 
of these papers; they give only an idea of the considerations that led Riemann to his 
hypothesis. Hadamard recalled an assertion contained in Riemann's papers: "These 
properties are deduced from a representation of it that I was unable to simplify enough 
to publish. ''2 This sentence calls to mind the note made by Pierre Fermat (1601-1665) 
in connection with his no less famous theorem on the impossibility of solving the 
equation x n + yn = z ~ in positive integers when n > 2. 

It is curious that the analogue of the Riemann hypothesis for (-functions defined 
over finite fields of algebraic numbers, the so-called L-congruence functions and the 
Artin L-functions, was proved by Andr6 Weil (1906-1998) in 1941. Thus one can 
say that the fields of rational and complex numbers to which we are accustomed have 
a more complicated structure than other fields. The attempts to prove the Riemann 
hypothesis undertaken by a number of eminent mathematicians have been very fruitful 
for the development of analytic number theory. On the one hand it has been possible 
to reduce many classical problems of number theory to certain assertions about the 
behavior of the (-function, for example the problem of representing a sufficiently 
large odd number as the sum of three primes, which is the ternary Goldbach problem, 
solved in 1937 by Ivan Matveevich Vinogradov (1891-1983). On the other hand 
a number of important results have been obtained toward a proof of the Riemann 
hypothesis itself. As early as 1914 G.H. Hardy (1877-1947) proved that there exists 
an infinite set of zeros of ((s) on the line Re s = 1/2. Later Hardy and J.E. Littlewood 
(1885-1977) obtained an estimate for the number No(T)  of zeros of ((s), s = cr + it, 
on the interval of complex numbers (1/2) + it, 0 < t < T, namely No(T)  > A T .  

In 1942 the Norwegian mathematician A. Selberg significantly improved the re- 
sults of Hardy and Littlewood by obtaining the estimate No(T)  > A T  In T, where A 
is a sufficiently small constant. Not until 30 years later did the American mathemati- 
cian N. Levinson succeed in improving Selberg's estimate by proving that A -,~ 1/3. 
He thereby proved that at least one-third of the nontrivial zeros of ((s) lie on the 
critical line. 

2Riemann, B. Gesammelte Mathematische Werke, p. 554. 
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The paper "rdber die Anzahl. . ."  became one of the most famous of Riemann's 
papers, his only publication on number theory. Another paper, written in 1863 and 
left unfinished at his death, bears the title "Sullo svolgimento del quoziente di due se- 
rie ipergeometriche in frazione continua infinita" ("On the infinite continued-fraction 
expansion of the quotient of two hypergeometric series"), Riemann considered the 
seemingly special problem of the convergence of the continued fraction expansions 
of certain classes of functions, including the hypergeometric functions. But the power 
of Riemann's talent was so great that even in solving this problem he obtained results 
that went far beyond the specific purpose he had set. In particular, in this paper he re- 
duced the problem under investigation to the problem of finding asymptotic formulas 
for multivalued integrals and obtained such formulas using a significant modification 
of the saddle-point method. A century later the results in this note were used by the 
British mathematician Alan Baker in his remarkable papers on rational approxima- 
tions of algebraic numbers. 

After Dirichlet's death, in Klein's words, "Riemann may once more have been 
more strongly influenced by W. Weber, ''3 and he returned to problems of mathemat- 

3Klein, F. Development of Mathematics, p. 237. 
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ical physics. We will begin with a discussion of the article, "On the propagation of 
planar air-waves with finite amplitude," published in 1860 in the A bhandlungen of the 
G6ttingen Scientific Society. It is devoted to the solution of an important problem on 
the propagation of sound waves in a medium, given certain relations between pres- 
sure and density. This is an exemplary investigation in mathematical physics. At the 
beginning of the article, Riemann summarized the state of that area of investigation. 
Discussing the latest articles of James Prescott Joule (1818-1889), W. Thomson (Lord 
Kelvin), and others on the thermal capacity of gases, it occurred to him that, although 
known thermal processes are well described by formulas of adiabatic and isothermal 
expansion, it would be of interest to find solutions of the equations of one-dimensional 
gas dynamics, given an arbitrary dependence of pressure p on the density of gas p. 
In the abstract to the article, he made a remarkable formulation of the principles that 
guided him in carrying out the work. 

The present work does not claim to lead to results in experimental re- 
search; the author asks that it be considered only as a contribution to the 
theory of nonlinear partial differential equations. In the theory of lin- 
ear partial differential equations, by far the most fruitful methods have 
been developed not by reasoning abstractly on the subject, but rather by 
studying special physical problems. Likewise, the theory of nonlinear 
equations can, it seems, achieve the most success if we direct our atten- 
tion to special problems having physical content with thoroughness and 
with a consideration of all auxiliary conditions. In fact, the solution of 
the very special problem that forms the subject of the current paper re- 
quires new methods and concepts and leads to results that probably will 
also play some role in more general problems. 4 

Riemann solved the problem of the propagation of a wave in a homogeneous 
medium. He derived his equations, analogous to Euler's equations of hydrodynamics, 
from conservation laws. He obtained a system of equations to describe the motion 
along the x-axis: 

Ou Ou _ Op 

o t  + u ~x ~ ' ( ; )  ax  
Op O(pu) 

+ -  - 0 ,  ( s . 3 )  
0t 0x 

where u is the speed at point x and p is the density. The first equation is simply 
the equation of motion (Newton's second law), and the second is the equation of 
continuity. 

This system of equations is nonlinear. Riemann discovered a remarkable effect 
that occurs only in nonlinear systems--the existence of "shock wave" solutions (Rie- 
mann's term). Physically they indicate that, even though "smooth" initial conditions 
are given, sharp jumps of pressure and density (breaks in solutions of equations of 

4Riemann, B. Gesammelte Mathematische Werke, p. 176. 
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type (5.3)) are possible. Riemann gave conditions for the formation of  a shock wave 
(the tipping condition) and found conditions for breaks given the formation of shock 
waves. 

The work of Riemann was developed by the French mathematician Pierre Henri 
Hugoniot (1851-1887) and the British engineer and physicist William John Mac- 
quorn Rankine (1820-1872), who showed how to obtain conditions for jumps from 
conservation laws. Shock waves raise a number of problems concerning gas and fluid 
dynamics that have enormous significance in applications. For example, shock waves 
are formed when high-speed aircraft break the sound barrier, when atomic bombs 
explode, and so forth. 

In this realm of investigation Riemann's work is acknowledged as a classic. In 
its purely mathematical aspect it is the origin of investigations on general solutions 
of differential equations of hyperbolic type, out of which arose the theory of distribu- 
tions. 

The fate of another of Riemann's papers, "On the movement of a liquid homoge- 
neous ellipsoid" (1861), is also interesting. It was closely associated with Dirichlet's 
last work, published soon after his death by Dedekind. Although Riemann himself 
wrote that 

For a mathematician it is especially attractive to follow along a path 
whose beginning was posed by this wonderful discovery, completely 
independently of the question as to the form of heavenly bodies which 
served as the occasion for these investigations, 5 

it is worth recounting the origin of this problem, which has engaged some of the 
greatest mathematicians, beginning with Newton. 

Newton showed that a slow rotation of the Earth ought to lead to a very slight 
flattening of it. Newton's arguments were remarkably clever and convincing. Imagine 
that two boreholes of identical diameter have been drilled in the Earth: one from a 
point on the equator to the center, the other from the pole to the center. Imagine them 
filled with a liquid. By the laws of liquid equilibrium, the weight of the column of 
liquid should be the same in both cases (since the pressure at the center is the same in 
both directions). However, the gravitational acceleration along the equatorial radius 
geq is decreased by centrifugal acceleration gc, while the acceleration along the polar 
radius gp is not (the Earth rotates about this axis.) 

If we assume that the Earth is homogeneous, the accelerations gc and geq are 
proportional to the distance from the center of the Earth; therefore their ratio is a 
constant quantity that can be determined at the surface. We shall denote this ratio by 
m, the equatorial radius by a, and the polar radius by b. Then the equatorial column 
of liquid will weigh 

a 
~geq(] -- m), 

5Ibid., p. 182. 
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while the weight of the polar column is 

b  gp. 
Since these weights are equal, it follows that 

ageq(1 - m)  -- bgp. (5.4) 

For a slightly flattened body 

g__LP ---- 1 -q- l e  -t- O(e2) ,  e = 
b 

1 
geq ~ a 

From these two formulas one obtains the amount of  flattening: 

5 
e =  - m .  

4 

In Newton's  time the quantity m was known (m = 1/290), and from it Newton 
obtained the amount of flattening: e "- 1/230. 

Newton's  conclusion contradicted astronomical facts of the time and "two gener- 
ations of the best astronomical observers formed in the school of the Cassinis 6 had 
struggled in vain against the authority and the reasoning of Newton? '7 The juxtapo- 
sition of the views of  Newton and Jacques Cassini (1677-1756) are beautifully illus- 
trated in an old drawing (Fig. 5.1). Nonetheless, it required geodetic measurements, 
conducted in Lapland in 1738 by Clairaut and Pierre Louis Moreau de Maupertuis 
(1698-1759), to confirm definitively the phenomenon of the flattening of the Earth's 
surface at the poles. As Isaac Todhunter (1820--1884) wrote: 

The success of the arctic expedition in large measure ought to be at- 
tributed to the artistry and energy of Maupertuis, and his name became 
widely known. In prints of the time he is shown in the costume of a 
Lapland Hercules: a fur hat pulled over the eyes; in one hand he held a 
cudgel, and in the other he gripped a globe. 

Voltaire, a friend of Maupertuis, warmly congratulated him at the time for flattening 
both the poles and the adherents of Cassini. Later Maupertuis and Voltaire got into a 

tragicomic polemic, and Voltaire wrote, 

"Vous avez confirm6 dans les lieux pleins d 'ennui 
Ce que Newton a connu sans sortir de chez lui." 

("You went out into the wilderness to confirm 
What Newton knew without leaving home.") 8 

6The Cassinis were a family of French astronomers. The most famous were Gian Domenico (1625- 
1712), Jacques (1677-1756, son of Gian Domenico), and C6sar Franqois (1714-1784, grandson of Gian 
Domenico). 

7Todhunter, I. History of the Mathematical Theories o,f Attraction and the Figure of the Earth .from 
the Time of Newton to that of Laplace, London: Constable, 1873. Reprinted by Dover, New York, 1962. 

8Quoted in Chandrasekhar, S. Ellipsoidal Figures of Equilibrium, New York: Yale University Press, 
1969. 
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Figure 5.1: The views of Newton and Cassini. 

In 1742 Colin Maclaurin (1698-1746) considered the general problem of the equi- 
librium of a rapidly rotating homogeneous body. He showed that such figures will be 
oblate spheroids. Laplace, d'Alembert and, even earlier, Thomas Simpson (1710- 
1761) the discoverer of the well-known Simpson rule, noticed a remarkable property 
of Maclaurin's spheroids. It does not follow that the spheroid is nearly a sphere when 
the angular velocity is small. It turns out that there exist two solutions; the first one is 
indeed nearly a sphere, but the second is nearly a very oblate ellipsoid. 

For almost a century it was thought that Maclaurin had found a complete solu- 
tion to the problem of figures of equilibrium of rotating homogeneous bodies. Only 
in 1834 did Jacobi point out that arbitrary ellipsoids might be permissible figures of 
equilibrium. The figures of equilibrium (stationary figures) found by Maclaurin and 
Jacobi possess one important special feature: they disintegrate if their angular veloc- 
ity of rotation exceeds a certain magnitude. Dirichlet posed the following problem: 
Determine the motion of a gravitating body that has the shape of an ellipsoid at each 
instant of time, when the coordinates of the particles are linear functions of their ini- 
tial values. Dirichlet himself considered the special case of a spheroid. Dedekind, 
who prepared Dirichlet's work for publication, found yet another class of solutions. 

A complete solution of Dirichlet's problem of stationary figures was given only 
by Riemann. He showed that, given a linear dependence of the velocity field on 
coordinates of the most general type of motion under which the ellipsoidal shape of 
the figure of equilibrium is preserved, there is a superposition of uniform rotation 
and internal movements with uniform vorticity of the liquid. Riemann's ellipsoids 
include the classical ellipsoids of Maclaurin, Jacobi, and Dedekind and, in addition, 
three new classes of figures. Riemann also touched on the problem of the stability of 
figures of equilibrium. In doing this he applied his beloved variational principle; but, 
as the American physicist N. Lebovitz has recently pointed out, he made an error in 
this part. 

The question of the stability of such figures, which is quite important for the the- 
ory of the origin of planets, was investigated subsequently in the classic works of 
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A.M. Lyapunov (1857-1918) and Poincar6. At present there is increasing interest in 
these fundamental results in connection with problems of astrophysics (for example, 
in the investigation of the equilibrium state of stars, for example, the structure and 
stability of white dwarfs and neutron stars). For the majority of stars one can apply 
Newton's theory of attraction. In the framework of Newton's theory the well-known 
astrophysicist Subramanyan Chandrasekhar (1911-1995) found, for example, an up- 
per bound on the mass of white dwarfs, below which they remain stable. It would be 
extremely interesting to consider the problem of equilibrium in relativistic hydrody- 
namics, although its potential applications, for example, to the study of superdense 
stars, are unclear; aside from purely dynamic properties, the physical processes them- 
selves are important in stars. Riemann's note, "Equilibrium of electricity on circular 
cylinders," evidently dates to this same period. The problem of the distribution of 
electrical charge in cylindrical conductors leads to the purely mathematical problem 
of solving Laplace's equation in a simply connected domain with prescribed boundary 
conditions. Here, for the first time, automorphic functions arise. 

All these remarkable works of Riemann were carried out in three years. At the 
same time he became acquainted with the greatest mathematicians of the world. In 
1859, soon after being elected into the Academy, he came to Berlin, where Kum- 
mer, Weierstrass, and Kronecker received him warmly. Weierstrass pointed out to 
him that the generalization of the well-known theorem of Jacobi that a single-valued 
analytic function on the complex plane cannot have more than two periods is of great 
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significance for the theory of Abelian functions. Somewhat later Riemann reported 
in a letter to Weierstrass his own proof of an analogous multidimensional theorem: 
A single-valued analytic function of n-complex variables cannot have more than 2n 
periods. 

Riemann took another trip in March of 1860 which brought him great pleasure. 
He visited Paris where he met with the most eminent French mathematicians: Charles 
Hermite (1822-1901), Joseph Bertrand (1822-1900), and Victor Puiseux (1820- 
1883). He also established friendly relations with the inseparable pair Charles Briot 
(1817-1882) and Jean-Claude Bouquet (1819-1885), well known mathematicians 
and authors of the first textbook on analytic functions. 



Chapter 6 

Last Years 

"I am always saddened when talented 

people die because earth needs them 

more than heaven does." 

GEORG LICHTENBERG 

I N July 1862 Riemann married Elise Koch, a friend of his sister. This marriage 
brightened the last years of his life. In the fall of 1862 he caught a serious cold and 

tuberculosis set in. Riemann spent his last years almost entirely in Italy. Thanks to a 
petition of Weber and Sartorius von Waltershausen, known for his work on Mt. Etna, 
he received government subsidies on three occasions for recuperation. He returned 
to G6ttingen, but the climate was too severe for him, and he did not attempt to give 
lectures. Riemann's last trip to Italy coincided with the beginning of the Seven Weeks' 
War between Hannover and Prussia. He arrived in Italy on June 28, 1866, the day 
Hannover capitulated. 

In Italy Riemann had many friends among the most important Italian mathemati- 
cians, including the acquaintances he made while still in GOttingen, E. Betti, and 
also E. Beltrami. Riemann's influence left a strong imprint on the Italian school of 
mathematics. 

When his illness was in remission, he continued to work. His final work, "Mec- 
hanik des Ohres" ("Mechanics of the ear"), published posthumously, was accompa- 
nied by the following editorial comment: 

During the last months of his life, this outstanding mathematician, who 
was taken from our school and from science by an early death, studied 
the theory of hearing inspired by Helmholtz's new theory of auditory 
sensations. 1 

It is known that Riemann was also interested in the nature of sight. 
Riemann spent the last months of his life in the little village of Selasca on Lake 

Maggiore together with his wife and three-year-old daughter, Ida. 

1Riemann, B. Gesammelte Mathematische Werke, p. 338. 
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At the end of  his life Riemann received recognition for his works. The Berlin 
Academy, which was the first to have noticed Riemann, elected him a foreign member 
at the beginning of 1866. From the presentation signed by Kronecker, Borchardt, 
and Weierstrass, it is clear how immeasurably the appraisal of Riemann's merits had 
grown: 

We confine ourselves to the results of only three of Riemann's works 2 
because they are already adequate for an appraisal of his significance. At 
the same time, however, we must emphasize that his methods deserve 
the admiration of specialists no less than his results and that a treasure 
trove of the most important and fruitful observations are to be found in 
the individual conclusions and propositions made in these works. 

After we have clearly described not only the rare talent of Herr Rie- 
mann but also the exceptional place that his name doubtless ought to 
occupy in the history of science, there is every reason to award him the 
Academy's  highest distinction----election as a foreign member. 

In March 1866 Riemann was elected a foreign member of the Paris Academy of 
Science, and on June 14, 1866, a month prior to his death, a member of the London 
Royal Society. "His strength declined rapidly, and he himself felt that his end was 
near," wrote Dedekind in his biography. "But still, the day before his death, resting 
under a fig tree, his soul filled with joy at the glorious landscape, he worked on his 
final paper which, unfortunately, was left unfinished. ''3 

Riemann died on July 20, 1866, his mind clear to the last second. His last words 
to his wife were, "Kiss our child." He was buried in the nearby village Biganzola. 
His tombstone bears the following epitaph: "Here lies in God Georg Friedrich Bern- 
hard Riemann--G6ttingen professor, born in Breselenz, September 17, 1826, died in 
Selasca, July 20, 1866. Denen die Gott lieben miissen alle Dinge zum Besten 
dienen. ''4 ("All things work together for good to them that love God." [Rom. 8:28]) 

2Borchardt, Kronecker and Weierstrass mentioned the following papers: "Uber die Anzahl der 
Primzahlen unter einer gegebenen Gr6sse" (On the number of primes less than a given quantity), "l]ber 
die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite?' ("On the propagation of planar 
air waves of finite amplitude"), "Ein Beitrag zu den Untersuchungen fiber die Bewegung eines fl/issigen 
gleichartigen Ellipsoid" ("A contribution to the study of the motion of a liquid ellipsoid of revolution"). 

3 Riemann, B. Gesammelte Mathematische Werke, p. 558. 
41bid., p. 558. 
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Posthumous Fate 

"The discovery of a new truth in itself 
is the greatest happiness; recognition 
can add almost nothing to that." 

FRANZ NEUMANN 

W H I L E  he lived, Riemann's work did not their author the influence procure 
he had a right to claim. This is especially true of the works that today are 

considered perhaps his main contribution to science: the theory of Abelian integrals, 
Riemann surfaces, and Riemannian geometry. There are many objective and subjec- 
tive reasons that explain this circumstance. His views on geometry were, of course, 
completely novel for a wide circle of mathematicians. One must not forget that the 
very idea of non-Euclidean geometry was accepted only with difficulty, even eliciting 
wild fury from a majority of philosophers. For example, here is what E.K. Diihring 
wrote in his essay, "Kritische Geschichte der allgemeinen Prinzipien der Mechanik" 
(A critical history of the general principles of mechanics), which earned the Benecke 
Prize in 1872 from the philosophical faculty of G6ttingen University: 

Thus the late G6ttingen mathematics professor, Riemann, who---with his 
lack of originality except for Gaussian self-mystification--was also led 
astray by Herbart's philosophistry, wrote (in his paper, "On the hypothe- 
ses that lie at the foundations of geometry, GOttingerAbhandlungen, Vol. 
13, 1868): "But it seems that the empirical]concepts on which the spatial 
definitions of the physical universe are based, the concept of a rigid body 
and of a light ray, are no longer valid on the infinitesimal level. Thus, 
it is permissible to think that physical relations in space in the infinitely 
small do not correspond to the axioms of geometry; and, in fact, this may 
be assumed if it leads to a simpler explanation of phenomena." It is not 
surprising that the somewhat unclearly philosophizing physiological pro- 
fessor of physics, H. Helmholtz, also could not pass up the opportunity to 
meddle in these investigations. In the article, "On the facts that lie at the 
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foundations of geometry, ' 'I he commented upon this curious absurdity in 
a favorable sense. 

Years passed before the ideas of Riemann and Helmholtz found their mathemat- 
ical realization in the works of Poincar6 and Einstein. The works on the theory of  
Abelian functions--which were Riemann's most brilliant in terms of the ideas they 
contained--were written in Riemann's characteristically intuitive manner; in places 
they were based on unproved assertions, and they did not satisfy the standards of 
rigor that were established at the time in mathematics. As an example of the ex- 
treme incomprehension of the value of Riemann's work, we again refer to the work 
of Diihring: 

Evidence of the completely dependent character of Riemann's work on 
Abelian functions is that in it the same method of intuitive presentation, 
in the same completely arbitrary form, is taken and extended simply by 
faith in the authority of the teacher [Gauss]. 

Today Diihring's article is considered a curio, but one must remember that in his time 
he was a well-known and influential philosopher, z He was known for his pathologi- 
cal antisemitism and for his acrimonious dispute with Helmholtz, but other qualified 
mathematicians also showed no clear understanding of Riemann's work. 

Weierstrass joined the fray with a criticism of the Dirichlet principle, on which 
Riemann's work was based, but Riemann's ideas gradually gained full recognition. 
After Hilbert proved the Dirichlet principle, all Riemann's arguments acquired a firm 
basis. Riemann's greatness as a mathematician lies in the fact that almost all of his 
works proved to be not an ending but rather the beginning of new, productive research. 
One can cite the theory of automorphic functions, the Atiyah-Singer theorem on the 
index of differential operators on manifolds of arbitrary dimensions (a generalization 
of the Riemann-Roch theorem), the problem of moduli of complex manifolds, the 
theory of  (-functions on algebraic varieties, Selberg's trace formula in the theory of 
discrete groups, and much more. 

Riemann's successes in so many areas of physics and mathematics depend on 
his universal approach to natural phenomena and his unusual flair for comprehending 
connections between apparently disparate phenomena. In his philosophical reflections 
he wrote, "My main work is in the area of a new understanding of well-known laws 
of Nature." 

Here it is perhaps appropriate to note the differences between two great mathe- 
maticians, Riemann and Weierstrass, whose names often stand side by side in con- 
temporary mathematics. Weierstrass' rigorous approach, in contrast to Riemann's in- 
tuitionist approach, consisted of  a precise and sequential process of reasoning. Weier- 
strass adhered to this approach in his articles and lectures. His concepts of  rigor 

1Abhandlungen der KOniglichen Gesellschaft der Wissenschaften zu GOningen, June 1868. 
2A critique of many of Dfihring's ideas can be found in Friedrich Engels', "Anti-Dfihring" For 

rather comical reasons Diihring's name (but, of course, not his work) was well-known in the Soviet 
Union, where every student was required to read Engels' work. 



Posthumous Fate 79 

DAVID HILBERT 

later became the standard in mathematical works. Weierstrass is considered a clas- 
sic example of a pure mathematician, and his pronouncement on the connection of 
mathematics with its applications is, therefore, all the more interesting: 

Between mathematics and the natural sciences, deeper mutual relations 
ought to be established than those hold when, for example, the physi- 
cist sees in mathematics only an auxiliary, though necessary, discipline, 
while mathematicians regard the questions posed by physicists only as 
a bountiful collection of examples for their methods... To the question, 
Can one really obtain anything directly applicable from those abstract 
theories with which today's contemporary mathematicians occupy them- 
selves?, I can answer that Greek mathematicians studied the properties of 
conic sections in a purely theoretical way long before the time when any- 
one could foresee that these curves represent the paths along which the 
planets move. I believe that many more functions with such properties 
will be found; for example, the well-known 0-functions of Jacobi make 
it possible, on the one hand, to find the number of squares into which any 
given number decomposes, thereby making it possible to rectify an arc 
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of an ellipse, and, on the other hand, they make it possible to find the true 
law of the oscillations of a pendulum. 

The clear difference between Weierstrass and Riemann can be seen not only in 
the difficult concrete physics problems they solved but in the effort to build theories 
explaining natural phenomena. 

These two contrasting views on the aims of mathematics can be traced at all stages 
of the development of science. Jacobi presented them in clear form: 

Monsieur Fourier held the opinion that the main aim of mathematics is 
its social utility and the explanation of phenomena of Nature; but as a 
philosopher, he ought to have known that the single goal of science is to 
bolster the courage of human reason, and therefore any sort of question in 
the theory of numbers has no less value than a question about the system 
of the world. 

In the actual evolution of science, by far the most fruitful approach is to accept 
the coexistence of both points of view. Niels Bohr (1885-1962) would call both 
approaches great truths. (A great truth is a truth whose negation is also a great truth.) 
We see a confirmation of this in the works of Jacobi on mechanics and of Riemann on 
the theory of numbers. Nonetheless, the history of mathematics shows periods when 
one of these tendencies is more prevalent than the other. 

A typical "intuitionist," Klein, who did much to develop Riemann's ideas, gave 
an appreciation, in humorous form, of the mathematics of the end of the nineteenth 
century: 

Mathematics in our day reminds me of major small-arms production in 
peacetime. The shop window is filled with models that delight the expert 
by their cleverness and their artful and captivating execution. Properly 
speaking, the origin and significance of these things--that is, their ability 
to shoot and hit the enemy, recedes in one's consciousness and is even 
completely forgotten. 

Just such a situation arose in the 1940s and 1950s. It was very aptly character- 
ized by the well-known American theoretical physicist and mathematician Freeman 
Dyson: "The marriage between mathematics and physics, which was so fruitful in 
past centuries, recently ended in divorce." Various causes have brought about this 
situation. Now, of course, it is absolutely impossible to imagine a mathematician 
working in an experimental physics laboratory. The time of Riemann will not come 
again, but recently we have seen renewed interest in physics among "pure" mathe- 
maticians. This renewed interest is now bearing its first fruits, and in precisely those 
areas of mathematics in which Riemann worked. 

In this situation completely new connections among various subjects that 
occupied Riemann have arisen in remarkable fashion. For example, in the theory 
of nonlinear waves (as well as for other classes of equations, i.e., the so-called inte- 
grable evolutionary systems), the Riemann 0-function arises in the search for periodic 
solutions. 
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The Selberg trace formula, which has roots in Riemann's work on the theory of 
the ~-function and the works of Klein and Poincar6 on the theory of automorphic 
functions, makes it possible to exhibit a connection between the distribution of the 
eigenvalues of the Laplacian on Riemann surfaces and the geometric and topolog- 
ical characteristics of the surface. Interest in this circle of questions has increased 
sharply in connection with the problems of quantizing classical dynamic systems with 
stochastic behavior ("quantum chaos"). 

The theory of gravitation, relying on Riemannian geometry, is merging with the 
theory of strong interactions (via the theory of gauge fields). A quantum theory of 
gravitation is coming into existence, in which vigorous use is being made of the meth- 
ods of algebraic geometry, which originated in Riemann's work on Abelian functions. 
One can now speak boldly of a "renaissance" in the relation between mathematics and 
physics. It suffices merely to list some of the brilliant achievements of modem mathe- 
matics that owe their existence to physics/mathematics "inbreeding": the construction 
of different smooth structures on 4-dimensional Euclidean space (fake R4), the dis- 
covery of new knot invariants, the creation of the theory of infinite-dimensional Lie 
algebras and quantum groups, and the effective description of the space of moduli of 
Riemann surfaces. 

More than a hundred years have passed since Riemann's death. Mathematics has 
been enriched in a major way by new ideas and results. Cantor's theory of sets has 
transformed its face and the degree of abstraction has reached extraordinary levels-- 
one has only to recall the theory of categories and functors, the theory of formal 
schemes, motives, the l-adic cohomology of Grothendieck, and so forth. It is re- 
markable that from the height of these theories Riemannian concepts that seemed 
completely mysterious and unrigorous to his contemporaries have received a very 
adequate description in the language of modern algebraic geometry and topology. 

A mathematical idea is fruitful if it makes progress possible on complex concrete 
problems left by preceding generations. Now, as before, the Riemann hypothesis 
poses a challenge to contemporary active mathematicians. One cannot doubt that 
Riemann's works will interest not only historians of science but also mathematicians 
for many years to come. 



Part  II 

Topological Themes in 
Contemporary Physics 



I T is far from accidental that topological and differential geometric ideas have 
emerged almost simultaneously in such seemingly disparate realms of physics as 

the theory of elementary particles and structural transformations in liquid crystals, 
quantum gravity and superfluid properties of helium. 

The application of these branches of mathematics is connected with basic unifying 
processes in theoretical physics, in particular with the recognition of the universality 
of such concepts as gauge invariance, hidden symmetry and the like. Therefore, the 
effective use of topological methods in this varied circle of questions is not surprising. 

Just as the methods of the theory of groups became an indispensable tool in the 
work of theoreticians after the clarification of the fundamental connection between 
conservation laws and symmetry principles, so topological techniques are necessary 
for studying the global properties of field theory and condensed matter. Finally, the 
effectiveness of topological applications is attained in combination with other meth- 
ods, especially analytic ones. 

The connection of topology with physics is no passing interlude but rather repre- 
sents a length affair. Readers who are interested in the contemporary state of the basic 
sciences may wish to learn about the significant events of the recent past in somewhat 
greater detail. 

I have tried to make the exposition accessible to readers with a modest background 
in physics and mathematics. It was impossible to avoid a certain fragmentation and 
slant toward mathematics, however, considering the brevity of this book and the vari- 
ety of themes discussed. 



Chapter 8 

Introduction 

"Geometry is the art of good reasoning 
from poorly drawn figures." 

ANONYMOUS 1 

T OPOLOGY is probably the youngest of the classical branches of mathematics. 
In contrast to algebra, geometry, and number theory, whose genealogies date to 

prehistoric times, topology (or as it was earlier called, analysis situs, that is, analysis 
of position, did not appear until the seventeenth century). 

In 1679 Leibniz published his famous book Characteristica Geometrica, in which 
(in modem terms) he tried to study the topological rather than the metric characteris- 
tics of properties of figures. He wrote that, aside from the coordinate representation 
of figures, "we are in need of another analysis, purely geometric or linear, which also 
defines the position (situs), as algebra defines magnitude." It is interesting to note that 
Leibniz tried to interest Christiaan Huygens (1629-1695) in his work, but the latter 
showed little enthusiasm. This was the first (albeit unsuccessful) attempt to interest a 
physicist in topology. 

Eighteenth-century mathematicians showed little interest in topology, with the 
exception of Euler, whose genius comprehended all of mathematics. Euler obtained 
two purely topological results which played an important role in the development of 
topology. The first of these--a proof of a classical theorem--is Euler's theorem on 
polyhedra (V - E + F = 2, where V is the number of vertices, E the number of 
edges, and F the number of faces); the second is the solution of the problem of the 
seven bridges of K6nigsberg. The latter laid the basis for the study of the topology of 
closed curves. 

It is instructive to recall the formulation of this problem, which shows that answers 
to questions that appear useless at first glance can give rise to serious mathematical 
theories. In the city of K6nigsberg there were seven bridges across the River Pregel 
which also connected two islands (Fig. 8.1). The question posed was the following: 
Is it possible, departing from any one place on one shore, to trace a path crossing 

1Anonymous, quoted by Henri Poincar6 in: Dernibres Pens~es, Flammarion, Paris, 1913. 
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each bridge exactly once and return to the starting point? For the inhabitants of 
K6nigsberg, this problem had more than abstract interest; all seven bridges charged 
tolls. 

In 1735 Euler found a remarkable general solution of this problem. He reduced it 
to the following question: could one draw the given closed curve without lifting the 
pencil from the paper and without crossing one and the same line twice? A graph with 
this property is said to be Eulerian. Euler obtained a beautiful constructive criterion 
for identifying such graphs. A graph F is Eulerian if and only if it is connected and 
the number of vertices of odd degree is zero or two. (The degree of a vertex is the 
number of edges it belongs to. The number of vertices of odd degree in any graph is 
even.) Thus, in this very special case, the criteria established by Euler contained the 
negative solution of the K6nigsberg bridge problem. 

In the nineteenth century topology developed rather slowly until the appearance 
of the outstanding work of Riemann on algebraic functions. Work in this field was 
concentrated in Berlin and G6ttingen, where August Ferdinand M6bius (1790-1868) 
and Listing were working. The term topology may have appeared for the first time 
in the work of Listing, a student of Gauss and (incidentally) a future professor of 
physics at G6ttingen. In 1848 he published a book, Vorstudien zur Topologie, de- 
voted primarily to a theory of knots. The eighty pages of this valuable book contain 
discussions of a number of concepts needed for the appearance of topology as an 
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Figure 8.1: The seven bridges of K6nigsberg. (a) Seven bridges across the Pregel 
River. (b) An equivalent graph. 

independent subject. The main topological topic of the book is the theory of knots 
and links. Listing came very close to a classification of knots by means of generating 
relations. The method was later developed by W. Wirtinger (the Wirtinger presenta- 
tion of a knot). Of especial interest to the modern reader are the motivations of the 
various concepts and the examples, which Listing took from biology (twisted lines 
in single-shelled snails), botany (hops and the scales of pine cones), and astronomy 
(the relative positions of the planetary orbits). Listing justified the introduction of the 
new term topology by saying that the phrase geometry of position (geometria situs) 
was already being used in a different sense in projective geometry. The essence of his 
definition of topology is still valid today. "Topology," he wrote, "is the study of the 
modal relations of spatial figures and the laws of connectivity, mutual position, and 
ordering of points, lines, surfaces, and solids and their parts independently of measure 
and magnitude relations." For a long time, however, the term geometria situs and the 
still more widespread term analysis situs continued to compete with topology, until 
they were definitively displaced in the 1920's. 
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The nineteenth century produced several other prominent mathematicians who 
obtained interesting topological results. Notable examples were Clifford, Klein, 
M6bius, and Bonnet; several other names could be added. Among the latter were 
Peter Guthrie Tait, a British mathematician and physicist, a close friend of W. Thom- 
son (Lord Kelvin). His research in topology involved knot theory, in which he ob- 
tained a number of first-rate results, including the complete classification of knots 
having knottedness of order at most eight. (The knottedness of a curve C is the num- 
ber of double points obtained when C is projected onto a plane in general position.) 
He stated a number of very deep conjectures on the structure of knots, some of which 
were settled only very recently, after the discovery of new polynomial invariants of 
knots and links. 

It is quite remarkable that Tait was led to his study of knots by reflecting on a 
theory of atomic structure proposed by Kelvin. Kelvin had invented a rather exotic 
theory based on the idea that an atom is a clump of tangled vortex lines. In the context 
of this theory the stability of atoms was explained as the impossibility of untying a 
nontrivial knot. The spectral characteristics of atoms resulted from the fluctuations of 
the vortex lines. It is curious that this approach resonates with the modern concepts 
of string theory. This seductive theory failed rather quickly when it did not survive 
experimental tests, but Tait's mathematical results remained. This beautiful example 
of the interaction of physics and mathematics shows the difference in the significance 
of results in the two subjects. Even the most elegant and beautiful physical theory may 
disappear without a trace if not confirmed by experiment, while, as a rule, a theorem, 
once proved, remains in mathematics forever. Like all general assertions, this thesis 
may provoke some objection; but I hope the reader understands what is meant. 

In the nineteenth century several other individual results were obtained which can 
be classified as topology, but there is nonetheless complete justice in Poincar6's as- 
sessment: "After Riemann came Betti, who introduced several fundamental concepts, 
but after Betti no one else followed." The decisive step was taken by Poincar6 himself. 
In 1895 his paper "Analysis situs" appeared in the Journal de l'Ecole Polytechnique-- 
an excellent gift to the school on its hundredth anniversary from one of its alumni. By 
general agreement among the best mathematicians of the world, it was this work of 
Poincar6 that established topology as an independent branch of mathematics. In this 
article and its five appendices, Poincar6 formulated the basic concepts of the new 
field. His ideas and results, in fact, defined the future development of topology. 

In this first article he underlined the importance of applying topological methods 
to solve various problems of mathematics. He wrote, "It is easy to see that a gener- 
alized analysis situs would make it possible to investigate equations of higher orders 
and, in particular, the equations of celestial mechanics. ''2 His foresight has been bril- 
liantly vindicated. Topology has become the basis of the contemporary qualitative 
theory of differential equations. However, the classical realms of mathematics and 
mechanics are far from exhausting the possibilities of applying topology. In recent 
years it has become an organic part of physics in such actively developing fields as 

2Ibid. 
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the theory of gravitation, quantum field theory, and solid state physics. The primary 
reason for this is that many concepts in physics and topology are surprisingly close 
to each other, although formulated in different languages. We will try to follow this 
connection, illustrating well-known topological concepts with several examples from 
physics. 



Chapter 9 

Topological Structures 

T OPOLOGY studies those characteristics of  figures which are preserved under a 
certain class of continuous transformations. Imagine two figures, a square and 

a circular disk, made of rubber. Deformations can convert the square into the disk, 
but without tearing the figure it is impossible to convert the disk by any deformation 
into an annulus. In topology, this intuitively obvious distinction is formalized. Two 
figures which can be transformed into one other by continuous deformations without 
cutting and pasting are called homeomorphic. For example, the totality of sides of any 
polygon is homeomorphic to a circle, but a circle is not homeomorphic to a straight- 
line segment; a sphere is homeomorphic to a closed cylinder but not to a torus, and 
SO o n .  

Poincar6 graphically explains the essence of topological structures in his profound 
Derni&res Pens~es: 

Imagine any sort of model and a copy of it done by an awkward artist: 
the proportions are altered, lines drawn by a trembling hand are subject 
to excessive deviation and go off in unexpected directions. From the 
point of view of metric or even projective geometry these figures are not 
equivalent, but they appear as such from the point of view of geometry 
of position [that is, topology]. 

Of course, Poincar6 did not foresee the appearance of  abstract artists who saw nothing 
wrong with disturbing the topology of the model. 

The definition of  a homeomorphism includes two conditions: continuous and one- 
to-one correspondence between the points of two figures. The relation between the 
two properties has fundamental significance for defining such a paramount concept as 
the dimension of space. Georg Cantor, the founder of the theory of sets, deserves the 
credit for developing a full logical basis for the concept of dimensionality. From his 
theory it follows that without enlisting continuity properties it is impossible to define 
the dimension of a space. For example, one can establish a one-to-one correspondence 
between points of  a straight line, of a plane, and, in general, of the space of any 
number of dimensions. The concept of  dimension acquires precise meaning if one 
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superimposes the additional condition of continuity. The Dutch mathematician L.E.J. 
Brouwer proved a basic theorem: There is no one-to-one and continuous mapping 
with a continuous inverse (homeomorphism) of the space M n to M m (given that n 
m). This theorem led topologists to study the general characteristics of topological 
spaces. A whole school of set-theoretic topology arose and grew especially rapidly in 
the 1920s. 

The other branch of  topology that owes its origins to the first works of Poincar6 
received the name of algebraic or combinatorial topology. Algebraic topology studies 
properties of a narrower class of spaces,-basically the classical objects of  mathemat- 
ics: spaces given by systems of algebraic and functional equations, surfaces lying in 
Euclidean space, and other sets which in mathematics are called manifolds. Examin- 
ing the narrower class of spaces permits deeper penetration into their structure. 

At present, most of  the applications that have been found are only for the methods 
of algebraic topology. In the remainder of this book the term, "topology" will signify 
algebraic topology. 

One of the basic tasks of  topology is to learn to distinguish nonhomeomorphic 
figures. To this end one introduces the class of invariant quantities that do not change 
under homeomorphic transformations of a given figure. The study of the invariance 
of topological spaces is connected with the solution of a whole series of  complex 
questions: Can one describe a class of invariants of a given manifold? Is there a set 
of integral invariants that fully characterizes the topological type of a manifold? and 
so forth. The possibility of ascertaining the topological type of a manifold given a 
set of integral invariants, is especially interesting. In essence, we are talking about a 
task very close to physics-- to characterize a particle, given its special parameters, for 
example, spin, charge, mass, etc. (Integral invariants are a sort of"quantum numbers" 
of a manifold.) 

Among such tasks is the classification of two-dimensional surfaces. From this ex- 
ample one can appreciate the beauty and nontriviality of topological methods. There 
exist two types of surfaces: orientable and nonorientable. A surface is orientable if a 
normal vector returns to its original direction when it is transported over any closed 
curve on the surface; otherwise the surface is nonorientable (Fig. 9.1). 

All closed orientable surfaces (without boundary) can be constructed using a spe- 
cial technique. Take a sphere, cut a hole in it, and paste a handle to the hole. A 
"handle" is a figure homeomorphic to a torus with a hole cut out (Fig. 9.2). Thus 
we get a figure homeomorphic to a torus. One can obtain all other orientable sur- 
faces by successively cutting holes in the sphere and pasting handles to them. Such a 
sphere with "handles" will be a model of  an arbitrary orientable surface. The number 
of handles (a topological invariant of the surface) defines what is called the genus of 
the surface. Two surfaces with a different number of handles are nonhomeomorphic 
(Fig. 9.2). 

The genus of the surface is associated with another important number--the Euler 
characteristic of the surface. Euler's theorem on polyhedra homeomorphic to a sphere 
admits generalization to an arbitrary surface. Let us draw a grid on an arbitrary two- 
dimensional surface, "chopping" it into pieces homeomorphic to a disk. Let us denote 
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Figure 9.1: Orientable and nonorientable surfaces. (a) A cylinder--an orientable 
surface with a boundary (two circles). (b) A torus--a  closed orientable surface. (c) A 
M6bius stritr---a nonorientable surface with a boundary homeomorphic to a circle. A 
M6bius strip is a one-sided surface; there exists a path on it such that, if one traverses 
the path, the normal direction to the surface reverses direction. 

the number of pieces of  this net by F ,  and the number of  the vertices and the number of 
the edges by V and E,  respectively. The quantity X defined by X = V - E + F  is called 
the Euler number or the Euler characteristic. This number is a topological invariant 
of the surface and does not depend on the choice of  the net. The Euler characteristic 
is expressed in terms of the genus of the surface by the equation X = 2 - 2p, where 
p is the number of "handles" or the type of the surface. 

Nonorientable surfaces can also be obtained by a simple construction. Here the 
Mfbius strip plays the role of  "handle." The M6bius strip, the first example of a 
nonorientable surface, was discovered by M6bius and Listing independently in 1858. 
It is easy to construct. Take a rectangular strip, give it a half-twist, and glue the ends 
together (Fig. 9.3a). The M6bius strip is not a closed surface. Its edge is homeomor- 
phic to the circle. An arbitrary closed nonorientable surface, Nq, can be represented 
as a sphere in which a certain number of  holes are cut out and a M6bius strip is glued 
to each hole. In contrast to orientable surfaces, where the process of gluing is feasible 
in real three-dimensional space, nonorientable figures cannot be constructed without 
self-intersection in three-dimensional space (Fig. 9.3). Closed nonorientable surfaces 
can be imbedded without self-intersection only in four-dimensional space. Nonethe- 
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Figure 9.2: The classification of surfaces. Construction of closed surfaces of genus 
one and two. (a) Conversion from a sphere to a torus. (b) Conversion from a sphere 
to a doughnut with two holes. 

less, from a topological point of view, nonorientable surfaces are homeomorphic to 
the surfaces Nq. The Euler characteristic of the M6bius strip is equal to zero; cutting 
a hole out of a surface (the removal of one face) reduces its Euler characteristic by 
one. Consequently X(Nq) = 2 - q, where q is the number of holes cut out. 

A closed nonorientable surface which is interesting and important for later exam- 
ples is the projective plane p2 = N1. In geometry the projective plane is defined 
using a system of homogeneous coordinates. A point x in the projective plane p2 has 
coordinates (x0, Xl, x2), where x0, xl, x2 are real numbers, at least one of which is not 
equal to zero. The term "homogeneous" means that two points x = (x0, xl,  x2) and 
x '  = (x~, x '  1, x~) represent the same point of the projective plane when they both lie 
on a straight line passing through the origin. 

Thus the projective plane is the set of unoriented straight lines in three-dimension- 
al Euclidean space. If one draws a sphere about the origin in three-dimensional space, 
every straight line intersects it at two points, which thus must be considered equiva- 
lent. One can prove that the mapping so created from the sphere onto the projective 
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Figure 9.3: Construction of nonorientable surfaces. (a) A M6bius strip (abb'a'). Sides 
ab and a'b' are identified after rotating one of the sides (for example, a'b') by 180 ~ 
(b) Construction of the closed nonorientable surface p2. The edge of the M6bius strip 
can be glued to one boundary of a "hole" in the sphere. Such pasting together cannot 
really be done in three-dimensional space unless the surfaces are allowed to intersect 
themselves. 

plane is continuous. In consequence a projective plane is topologically equivalent 
to a sphere with the antipodal points identified (two such points on a sphere define 
one point of a projective plane). This definition will be convenient in the subsequent 
exposition. 
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By cutting a sphere along the equator, we obtain two hemispheres. Lets consider 
one of them. In order to obtain a projective plane from this hemisphere we have 
only to identify diametrically opposite points on the boundary circle--the edge of 
the hemisphere. Such an identification is equivalent to pasting on a Mfbius  strip. 
(Remember the definition of a M6bius strip.) Consider the Euler characteristic of  the 
projective plane. The projective plane is equivalent to a hemisphere with a M6bius 
strip pasted on. The transformation from a sphere to a hemisphere is equivalent to 
cutting a hole, that is, to reducing the Euler characteristic by one, while pasting on a 
M6bius strip does not change it. Thus the Euler characteristic of the projective plane 
is equal to one. 

A still better-known example of  a closed one-sided surface is the Klein bottle (Fig. 
9.4). Like the M6bius strip, it also is obtained by a special identification of the sides 
of a rectangle. Consider the rectangle A B C D .  From this rectangle we paste together 
a cylinder by identifying sides A B  and CD.  The cylinder has two edges, circles ll 
and 12. If one simply pastes these circles together, the result is an orientable surface, 
a toms. The Klein bottle is formed by identifying the circles 11 and 12 after reflecting 
11 about the diameter ab. The Euler characteristic of the Klein bottle is equal to zero. 

One can prove (with difficulty) that any closed two-dimensional surface is home- 
omorphic to one of those enumerated above. Thus, two-dimensional surfaces are 
characterized by two parameters: genus and orientability. 

It would be very strange if mathematicians confined themselves to the study of 
two-dimensional manifolds and made no attempt to classify multidimensional spaces. 
The task of classifying multidimensional spaces is incomparably more complex. The 
classification of even three-dimensional manifolds is a difficult unsolved problem, and 
the problem of classifying four-dimensional spaces is in a certain sense unsolvable. 
The Russian mathematician Andrei A. Markov, Jr. (1903-1979) proved the impossi- 
bility of constructing an algorithm that would make it possible to compute whether 
or not two given four-dimensional manifolds are homeomorphic. In the early 1980's 
the American mathematicians William P. Thurston and Michael H. Freedman and 
the British mathematician Simon Donaldson have made great progress in the clas- 
sification of both three- and four-dimensional manifolds. The results of  Donaldson, 
who has constructed various smooth structures on simply connected 4-dimensional 
manifolds, use constructions from the theory of gauge fields. Some idea of these re- 
markable discoveries will be given below in the chapter on "Topological Particles. ''1 

The structure of manifolds of  higher dimensions has special interest for quantum 
physics. Examples of  such manifolds arise in quantum field theory and quantum 
gravity, where the basic objects of  study are 4-dimensional space-time, gauge fields, 
and multidimensional symmetry groups. 

In higher dimensions the classification problem arises only for manifolds endowed 
with additional structures. Topology now has powerful methods of studying specific 

1For expository accounts of their work, see: William P. Thurston, "Three dimensional manifolds, 
Kleinian groups, and hyperbolic geometry," Bull Amer. Math. Soc. (NS), 6 (1982), 357-381, and 
Michael H. Freedman, "There is no room to spare in four-dimensional space,"Amer. Math. Soc. Notices 
31 (1984), 3-6. 
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Figure 9.4: The Klein bottle--a closed nonorientable surface of genus 0. (a) The ini- 
tial rectangle A B C D .  (b) The cylinder obtained by gluing sides AB and CD together. 
(c) The identification of the circles. (d) The Klein bottle. The boundaries ll and 12 are 
identified after a reflection with respect to the diameter ab. 

manifolds. We mention here only two classes of invariants, which in a number of 
cases yield a simple solution to the problem of determining the topological structure 
of a given manifold. These two approaches, which are characteristic of topology, 
call to mind an analogous situation in physics. Physical bodies can be studied in 
two ways: through their internal structure or through their interaction with known 
objects. A typical example is the measurement of an electric field by introducing 
a standard charge into it. In topology, homology theory corresponds to the former, 
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Figure 9.5: Continuation of Fig. 9.4. 

while homotopy theory corresponds to the latter. The connection between the two 
theories is quite subtle. 

Homology theory studies properties of manifolds by decomposing them into simp- 
ler parts. The structure of these parts can be investigated easily by introducing alge- 
braic characteristics associated with these decompositions. The main difficulty lies 
in proving that the corresponding characteristics of the decomposition, in fact, do 
not depend on the particular choice of the decomposition but are rather a topological 
invariant of the manifold itself. 

The Euler characteristic already discussed can serve as an example of a topologi- 
cal invariant of a homological type. Let us look at two regular polyhedra: the tetrahe- 
dron T and the cube C. We shall compute the Euler characteristic (X = V - E + F )  
of the tetrahedron T and the cube C. For the tetrahedron, X (T) = 4 - 6 + 4 = 2, 
while for the cube, X (C) = 8 - 12 + 6 = 2. Let us describe a sphere around each 
of the polyhedra and project the polyhedra onto the surface of the sphere. As a result 
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Figure 9.6: Contours on a disk and an annulus. (a) A disk. Any closed path can be 
contracted to a point. (b) An annulus. Path F1 can be contracted to a point, while path 

F2 cannot. 

we obtain two grids on the sphere. These grids produce different decompositions of  
the sphere, but, as is obvious, they have one and the same Euler characteristic. By 
definition this number is the Euler characteristic of the sphere. 

If we know in advance that the necessary characteristic is a topological invariant, 
we can use the simplest decomposition of  the manifold to compute it. The computa- 
tion of  the invariant for this decomposition thereby defines it for the original manifold. 

Homotopy theory supplies us with invariants of the other type. Let us look at 
two examples of homotopy invariants. Take two figures, a disk and an annulus (Fig. 
9.6). Draw a closed curve F in each of them. Now try to contract the curve F to 
a point by a continuous deformation. It is obvious that this is possible only in the 
disk. In the annulus the path F2 can be contracted to a circle enclosing the hole, 
but there is a closed curve F1 that can be contracted to a point. It is easy to show 
that all closed paths in an annulus contract either to a point or to a path which goes 
around the boundary circle, possibly several times. In the disk all closed paths can be 
contracted to a point. A space in which all closed paths can be contracted to a point is 
called simply connected. Of the two-dimensional orientable surfaces, only a sphere is 
simply connected. For example, on a torus there is an infinite set of closed paths that 
cannot be contracted to a point. Moreover, there exist closed paths not contracting 
to a point which cannot be continuously deformed into each other (Fig. 9.7). Such 
paths are called nonhomotopic. The set of classes of  closed paths, nonhomotopic to 

one another - -a  topological invariant of a manifold is called the fundamental group 
of the manifold. This group is also called the first homotopy group ~rl, because it is 
the first in a whole sequence of  homotopy invariants, the homotopy groups ~rn. 

In what follows we shall frequently have to deal with various groups. Let us 
recall the definition of a group. Consider a set G of elements g for which an algebraic 
operation " x " called multiplication, is defined. Specifically, for each two elements 

gl ,  g2 E G, the element g3 = gl  • gz is a well-defined element of G. The set G is 

called a group if it fulfills the following conditions: 
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Figure 9.7: Nonhomotopic paths on a torus. Path a is not homotopic to path b. An 
arbitrary closed path c on the torus is homotopic to a path passing n times along the 
parallel a and m times along the meridian b. 

1. for any three elements gl, g2, g3, the identity ga x (g2 • g3) = (gl • g2) • g3 
holds (associativity of multiplication); 

2. G contains an element e (the identity of the group) such that for any g 6 G, 
e x g = g x e = g ;  

3. for any element g ~ G there exists an element g '  such that g x g' = g' • g = e. 
The element g '  is called the inverse of g and is denoted g-1.  

The definition of  a group does not require that gl x g2 = g2 • ga for all gl, g2 E G. 
If this requirement is met, the group is called commutative orAbelian, in honor of the 
famous Norwegian mathematician N. H. Abel. 

The set of symmetries of an equilateral triangle, the group T3, serves as a useful 
illustrative example of a group. It consists of  six elements: three rotations gl, g2, g3 by 
angles 2zr/3, 4zr/3, and 2zr respectively, and elements g4, g5, g6 given by gi+3 = sgi, 
i = 1, 2, 3, obtained by combining a rotation with a reflection s about an axis of 
symmetry of the triangle (s • s is the identity of the group). The set of pure rotations 
(without reflections) forms a subgroup R3 of the group T3. It follows from this that the 
product of  two rotations will be another rotation. The subgroup R3 is a commutative 
group, but the full group T3 is noncommutative, as the reader can easily see. 

The fundamental group was discovered by Poincar6 and is sometimes called the 
Poincar6 group by mathematicians. This name would be inconvenient to use in 
physics literature, however, where the Poincar6 group is the accepted name for the 
full group of  transformations of space-time. 

It is convenient to put the definition of the fundamental group in a form which 
allows us to construct a multidimensional generalization, the n-dimensional homo- 
topy group zr,. A closed path F on a manifold M can be represented as the image 
of a fixed circle S 1 (the "test body"). Then the fundamental group 7/" 1 (M) is the set 
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Figure 9.8: Vector fields on a sphere and a toms. (a) On the sphere. (b) On the torus. 

of mappings of  the circle S a into the manifold M which are not homotopic to each 
other. If we now replace the circle in the definition of  the fundamental group by the 
n-dimensional sphere, we obtain the definition of the n-dimensional homotopy group 
rr, (M). 

Between the homology and homotopy characteristics, there exist various links. 
For example, a simply connected manifold was defined above by the requirement that 
the fundamental group be equal to zero. On the other hand, Riemann's initial defini- 
tion of connectivity using a system of cuts had the character of  homology. Let us give 
a homological definition of  simple connectivity. A surface is called simply connected 
if any closed path separates it into disjoint parts. From this definition and the classifi- 
cation of  two-dimensional surfaces, it also follows that the sphere is the only simply 
connected orientable two-manifold. The coincidence of two such different definitions 
is not accidental but rather the result of a fundamental topological theorem proved by 
the Dutch scholar Witold Hurewicz (1904-1956). 

The topological type of a manifold imposes considerable limitations on the be- 
havior of vector, tensor, and other fields defined on it. How, for example, can we 
construct a continuous nonzero field of tangent vectors on a closed two-dimensional 
surface Me? In other words, is it possible to comb a hedgehog (Fig. 9.8). Let us im- 
pose a minor constraint on nature and suppose that the hedgehog is a two-dimensional 
orientable surface. (In the nonorientable case yet another hedgehog will appear in the 
guise of  the Klein bottle.) After combing, not a single spine of the hedgehog is to jut 
out beyond the normal surface; more precisely, if from each point there grows a spine 
(a nonzero vector, not necessarily tangential to Me), and the direction of  the spines 
is a continuous function of the coordinates of the point x0 lying on the surface, then, 
after combing, not a single spine is to be directed perpendicular to the surface M 2. 
The answer depends on the topology of  the surface. It turns out that one can comb 
only a "torus" hedgehog. 

The mathematical formulation of  this fact consists of  confirming that a tangential 
vector field degenerates, that is, it must be equal to zero for at least one point of any 
surface except the torus. In such a case the vector field is said to have critical points. 
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Poincar6 proved a remarkable theorem connecting the number of critical points of a 
vector field on a surface with the Euler characteristic of the surface. A vector field 
without critical points exists on a surface if and only if the Euler characteristic of the 
surface is equal to zero. The generalization of this problem, that is, the construction of 
vector and tensor fields on manifolds of higher dimension with a given type of critical 
point, constitutes one of the major branches of topology--the theory of characteristic 
classes. 

We shall now illustrate the connection of topological properties of spaces with 
fundamental physical phenomena by a simple, well-known example. 



Chapter 10 

The Connectivity of a Manifold 
and Quantization of Magnetic Flux 

I F a ring in a superconducting state is placed in a magnetic field and then the field 
is turned off, a superconducting current will begin to flow in the ring. In striking 

fashion, it turns out that the magnitude of magnetic flux is quantized, that is, it takes 
on only values from the discrete set of  numbers cnh/2e, n = 0, 1, 2 . . . . .  where h is 
Planck's constant, e is the charge of an electron, and c is the speed of light. In the case 
of continuous superconductivity, the flux is equal to zero. This result follows from the 
macroscopic theory of superconductivity, supplemented by the concept of  the Cooper 
pairing of electrons. This result, discovered by the American physicist Leon Cooper, 
is the basis of  the contemporary microscopic theory of superconductivity, established 
by J. Bardeen, L. Cooper, and J. Schrieffer in 1957 (the BCS theory, for which the 
three received the 1972 Nobel Prize). 

Briefly, the phenomenon can be described as follows: Electrons in a supercon- 
ducting state attract one another, forming connected pai rs- -Cooper  molecules. These 
molecules should not be pictured as united point particles, however. Two electrons 
forming a pair can diverge to distances greater than the average distance between 
pairs. Nonetheless, one can talk about the wave function of the pair @ and the spin 
of the pair, which is equal to zero. This is the theoretical difference between super- 
conductivity and the usual flow of free electrons--particles with a spin of 1/2. As 
is well known, fermions--particles with a spin of 1/2---obey the Fermi-Dirac statis- 
tics, that is, only one particle can be found in each state. Bosons, which are particles 
with integral spin (especially zero), are subject to the Bose-Einstein statistics, that is, 
any number can be found in each state. The formation of a large number of bosons 
in the lowest energy state is called the Bose condensate. The existence of the con- 
densate at a given temperature Tc (the temperature of superconductivity) leads to a 
superconducting current. 

The concept of the Bose condensate makes it possible to consider a series of 
effects, among them the quantization of magnetic flux using macroscopic quantities 
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like the wave function of superconducting pairs ~k. Formally the function ~ satisfies 

h a 1 | , _ . _ _ ) / h V  a A \ 2  
7 ~t @ = ~ m \ 7  c / + q r 1 6 2  (10.1) 

the usual SchrSdinger equation for a nonrelativistic particle with zero spin moving 
in an electromagnetic field. But the charge q means the charge of a pair, q = 2e, 
where h = h/27r, A is the vector potential, and ~ is the electric potential of  the 
electromagnetic field. The current density j is related to the charge density p = I~Pl 2 
by the equation 

j=~(VO-~-A)p .  (10.2) 

Here 0 = arg ~p is the phase of the wave function lp = Ir i~ 
It is well known that the current density j inside a body found in a superconduct- 

ing state is equal to zero. Formula (10.2) implies the relationship between the phase 
and the vector potential A, 

chVO = qA. 
If the conductor is not continuous, then the contour integral on any closed path en- 
closing a hole equals 

ch f  VO=qf  AdS=q f curlAd(r =q,l~. 

The current ~ in a ring superconductor is equal to the value of the change of phase 
of the wave function ~ as it traverses a closed contour. It is natural to require that the 
wave function have unit length at every point. Then as it travels around the closed 
contour, the phase 0 can change only by 2Jrn, where n is an arbitrary integer, and 
the magnetic flux �9 across the ring superconductor will be a multiple of the number 
ch/q. 

This effect was predicted in 1948 by the American physicist F. London 
(1900-1954), even before the creation of the microscopic theory of superconductiv- 
ity. The magnitude of a minimal flux was predicted to be twice what it proved to be 
experimentally. London had considered the magnitude of q equal to the charge of the 
electron e. 

Let us now consider this effect from the point of view of topology. The integral 
of the gradient of  the phase along an arbitrary path in a disk is equal to zero, because 
one can deform this path to a point, but in a ring such a path is equivalent to a circle 
enclosing the hole and, as was shown above, the integral along it is equal to q(1). 

In view of the fact that a disk and a ring have different connectivity, London's 
effect is formulated as follows. Quantum flux exists in a multiply connected conductor 
and is absent in a simply connected conductor. Quantization of flux thus is connected 
with the topology of a superconductor. The example just analyzed is only the first of  
a whole series of physical effects with topological components. Some of these will be 
discussed in subsequent chapters. 



Chapter 11 

Systems with Spontaneous 
Symmetry Breaking 

M ANY physical systems, seemingly quite different from one another, turn out 
to be susceptible to investigation by certain topological methods. The phe- 

nomenon that unifies such physically different systems as liquid crystals, magnetism, 
and superfluid helium, is called spontaneous symmetry breaking. It underlies many 
contemporary concepts in the theory of elementary particles, the theory of phase tran- 
sitions, and a number of problems of cosmology. 

The essence of this phenomenon is revealed by a particular example taken from 
the theory of magnetism. Given a low enough temperature, a wide variety of crystals 
become magnetized in the absence of an external magnetic field. This phenomenon is 
called ferromagnetism and is explained by the existence of a special exchange inter- 
action among the atoms of crystal lattices. The magnetization thus created is called 
spontaneous because it is formed without the application of an external field and 
is characterized by the magnetization vector M- - the  magnetic moment of a ferro- 
magnet. 

We will not delve more deeply into the labyrinth of the theory of the ferromag- 
net but will consider the classical model--the isotropic Heisenberg ferromagnet--as 
a spontaneous symmetry breaking effect. Consider a crystal lattice, at the vertices of 
which there are localized particles with half-integer spin, for example, electrons. For 
the sake of simplicity, we shall consider the lattice to be two-dimensional, although 
our conclusions are valid also for a three-dimensional lattice (Fig. 11.1). The interac- 
tion between electrons located in neighboring points of the lattice is defined by spin 
vectors S(x). For the sake of definiteness we take the Hamiltonian (energy operator) 
H to be 

H = ~ I(x - x')S(x)S(x'). (11.1) 
X , X  I 

The function I(x) = 0 if x ~ a, where a is a base of the lattice I (a )  = ). 
Q. < 0). The quantity I (x) is called the exchange integral, and the interaction itself is 
called a nearest-neighbor interaction, because the contribution in (11.1) involves only 
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Figure 11.1: The isotropic Heisenberg ferromagnet on a two-dimensional lattice. The 
ground state of the system {M 2 = max}. (All spins S look "upwards"). 

interactions between two adjacent points. The magnetization vector M has the form 

M = ~ S(x). (11.2) 

One can show that the Hamiltonian (11.1) does not vary with rotation of the mag- 
netization vector M; that is, the energy does not depend on its direction. The state 
with the least energy--the ground state of the system--corresponds to the greatest 
value (M2). Remember that I < 0. In this state all spins S are oriented identically 
along a certain fixed axis n and the projection of the magnetization vector M in the 
direction of the orientation of the spins n has a definite value. From this it obviously 
follows that the ground state is not invariant relative to the full group of rotations of  
the vector M. The symmetry group must preserve the fixed direction of the vector M. 
In the given case, it corresponds to the group of rotations of a circle. 

Now, at last, we can give the definition of spontaneous symmetry breaking. Sys- 
tems in which the symmetry of the ground state does not correspond to the symmetry 
of the Hamiltonian are called systems with spontaneously broken symmetry. This is 
the accepted name for such systems, but it would be more correct to call them systems 
with hidden symmetry. In essence, the symmetry of the Hamiltonian is not broken, 
only hidden. In the ground state it is impossible to uncover the higher symmetry of 
the system. 

Examples of  similar symmetry-breaking are encountered in various problems of 
physics. It is known, for example, that nuclear forces are invariant relative to rotations; 
at the same time, the ground state of a nucleus with nonzero spin is not invariant 
relative to the group of rotations. 

The effect of spontaneous symmetry breaking is one of the mechanisms that ex- 
plain a broad range of phenomena--phase transitions in matter. 

It is known that one and the same substance can be found in different states or 
phases, depending on external conditions (temperature, pressure, etc.). The transition 
from one phase to the other is called a phase transition. Phase transitions occur in a 
wide variety of materials. As an example, the transition of a metal from the normal 
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state to the superconducting state occurs at very low temperatures; in mercury, for 
example, the first substance in which the phenomenon of superconductivity was ob- 
served, electric resistance drops to zero at a temperature ~- 4 K. On the other hand, in 
recent years views on the nature of superconductivity have greatly altered as a result 
of the striking discovery of a class of superconductors in the Ba-La---Cu-O family 
with phase transition temperature Tc "~ 30 K in 1986 by the Swiss physicists J. Bed- 
norz and A.K. Miiller, winners of the 1987 Nobel Prize. In later experiments Curie 
temperatures as high as Tc "~ 90 K have been attained. As another remarkable ex- 
ample helium 4 He becomes superfluid at temperatures around (2 K). In 1972 a phase 
transition into the superfluid state was discovered in another isotope of helium, 3He. 
It occurs at a fantastically low temperature--2.6 x 1 0  - 3  K. 

Underlying the contemporary theory of phase transitions is the study of the sym- 
metry of systems in various phases. More precisely, it is known that phase transitions 
of first and second kind occur. The first kind includes the classical examples: solids 
dissolve or are formed, liquids evaporate, gases condense. The process of melting 
ice at great pressure is such a transition. Transitions of the second type include the 
formation of superfluid helium from normal helium and the transition of metal into a 
superconducting state. 

By their nature phase transitions of the first and second type differ substantially. 
One can explain the difference by referring to the classical 1937 work of Lev Landau 
(1908-1968), which is the foundation of the contemporary theory of phase transi- 
tions. Landau regarded phase transitions as changes of the symmetry of matter, For a 
quantitative description of a phase transition, he introduced a degree of ordering, the 
order parameter. The order parameter is defined differently for specific systems but 
possesses an important general property: it is equal to zero in a "disordered" phase 
and is nonzero in an "ordered" phase. 

Phase transitions of the first and second kind are distinguished by the behavior of 
the order parameter. In transitions of the first kind the order parameter changes by 
jumps, in the second kind it changes continuously. 

Let us examine the phase transition of ice to water, the process of melting, from 
this perspective. If one chooses the order parameter 0 to be the ratio of the number of 
molecules at the nodes of a crystal lattice to the total number of molecules, then in the 
"ordered" phase (ice) 0 is nonzero, but in the "disordered" phase (water) t/ = 0. In 
this transition, ~ changes by a jump, and consequently, the melting process is a phase 
transition of the first kind. 

We shall now give a precise meaning to the terms "ordered" and "disordered" 
phases. Consider the symmetry of two states, ice and water. It is natural to regard the 
symmetry group of the crystal lattice F as the symmetry group of ice. The group F is 
discrete. Its elements are translations of the lattice, spatial rotations and reflections. 
The symmetry group of water G is considerably larger; by this is meant the group 
of all transformations that preserve the hydrodynamic equations of an incompressible 
fluid. The group G is a continuous infinite-dimensional group. 

In our example the symmetry group G of the less ordered phase, water, contains 
as a subgroup the symmetry group of ice F. A similar situation obtains in phase 
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transitions of the second kind. In phase transitions of the first kind, it may happen 
that the symmetries of the two phases are not connected by any sort of relationship. 

To take another example, let us consider the now-familiar Heisenberg ferromag- 
net (a transition of the second kind) from the perspective of phase transitions. In 
the ground state of the ferromagnet (T = 0) all spins are directed identically. We 
have defined this direction by the vector n which coincides with the direction of the 
magnetization vector M. Under heating (T > 0) the correlation between spins Si 
is weakened; their orientation becomes chaotic, and correspondingly the mean value 
(M 2) decreases. At a certain temperature Tr the Curie point, the value of (M 2) 
reaches zero. A ferromagnet loses its magnetic properties and converts to paramag- 
netic phases. One can consider the magnetization vector M as the order parameter 
defining the phase transition in this system. 

We must emphasize again the connection of symmetry with the properties of the 
ordered and disordered phases. In the ordered, or ferromagnetic phase, the system has 
the symmetry of the ground state. This symmetry group coincides with the group of 
rotations, leaving as invariant the direction of magnetization along which spins were 
lined up. Transition to the paramagnetic state results in a system with a larger symme- 
try group, the group of all rotations of three-dimensional space. This is because in the 
paramagnetic phase there is no preferred direction. In this phase the full symmetry 
group of the Hamiltonian coincides with the symmetry of the ground state, or (as they 
say in physics), symmetry has been restored. 

In this example we see all the peculiarities of the general outline: the symmetry 
group corresponding to the ordered phase is smaller than that of the disordered phase. 
In this case the symmetry group of the disordered phase contains the symmetry group 
of the ordered phase as a subgroup. 

Landau's macroscopic theory of phase transitions has made it possible to describe 
a very broad range of phenomena. Nonetheless the difficult problems involved with a 
detailed description of phase transition near critical points remain unsolved. In recent 
years substantial progress has been made in this area, associated with the application 
of the ideas of field theory, but the problem of constructing a microscopic theory of 
phase transitions is still far from being definitively solved. 

The range of problems for which a solution is needed, if only on a macroscopic 
level, has expanded remarkably. It is precisely here that topology ought to aid physi- 
cists. As an example we shall show how the problem of the existence of line (thread- 
like) and point singularities in liquid crystals can be solved using topological meth- 
ods. This example was not chosen haphazardly. First, the study of liquid crystals is 
an appealing problem, important both in a theoretical and an applied sense. Second, 
the peculiarities of applying topological methods in the physics of liquid crystals are 
typical of many systems with spontaneous symmetry breaking. 



Chapter 12 

Topology and Liquid Crystals 

L IQUID crystals are structures in an intermediate state between a liquid and a 
rigid body. There is a certain ambiguity in the very term. True liquid crystals 

have both the properties of a crystal (orderliness of structure) and the properties of a 
liquid (fluidity). 

The atoms in a crystal are located at the nodes of a regular three-dimensional 
lattice. This property was always assumed by crystallographers, but only after the 
classical experiments on the diffraction of X-rays by Max von Laue (1879-1960) in 
1912 was there the possibility of "viewing" the lattice. The British scientists William 
Henry Bragg (1862-1942) and William Lawrence Bragg (1890-1971), father and son, 
developed a method for determining the structure of  a crystal lattice by measuring the 
intensity of  the scattering of X-rays from it. In an X-ray diffraction image, repeating 
dots (Bragg images) appear at certain distances which are characteristic of the lattice. 
In liquid crystals, a certain orderliness also arises, but, in contrast to solid crystals, the 
periodic structure is usually observed only in one or two dimensions. Both dimensions 
occur in nature. 

A large class of liquid crystals called smectics possess spatial orderliness only in 
one dimension. The mechanical properties of  smectic liquid crystals resemble the 
properties of  soap. (The term smectic was proposed by the French crystallographer 
Georges Friedel (1865-1933) and comes from the Greek cr/zr~y/zt,, meaning soap.) 
In their structure smectics are like a pile of leaves whose layers are an equal distance 
apart. Each layer is a two-dimensional liquid. This class of liquid crystals, despite all 
its remarkable properties, is somewhat peripheral to the topological applications we 
wish to study. Let us leave smectics for a while and look more closely at other forms 
of liquid crystals. 

A large number of  liquid crystals with properties completely different from smec- 
tics are formed from organic molecules; they are called nematic liquid crystals. One 
of the commonest  examples of a nematic liquid crystal is n-azoksianizol. 

This crystal is a rigid rod with length about 20 ,~ and thickness about 5 .~. Given 
a sufficiently high temperature, (120 ~ C) and atmospheric pressure, molecules of  n- 
azoksianizol are found in the nematic liquid-crystal phase. 
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Figure 12.1: The nematic n-azoksianizol. 

The term nematic (from the Greek v~#a ,  meaning thread) was also invented by 
Friedel, who observed the threadlike defects characteristic of such crystals. In their 
structure nematics are closest to liquids, but they differ sharply from them in their 
optical properties. The most natural way to think about nematics is as a collection of 
sticks or distended molecules strewn about in space. At the same time, the centers 
of gravity of the molecules are located completely arbitrarily, and in this they are 
similar to an ordinary liquid, where there is no particular relationship between the 
centers of molecules. However, there exists a certain order in the orientation of the 
molecules. They are lined up parallel to a certain axis characterized by the unit vector 
n. The direction of the vector n coincides with the direction of the optical axis of the 
medium (that is, the major axis of the molecule). In contrast to an ordinary liquid, a 
nematic behaves like a doubly refracting medium. The difference between the indices 
of refraction for polarization along the optical axis and in the direction perpendicular 
to it is very large. 

Nematic phases are found only in liquid crystals that are optically pure--that  is, 
all the molecules in the solution rotate polarized light in the crystal in the same direc- 
tion under the same conditions. The instant a stereoisomer (mirror image) molecule 
is introduced, a spiral distortion appears in the liquid crystal structure. This phe- 
nomenon was first observed in cholesteric ether; for that reason this phase is called 
cholesteric. 

To obtain quantitative information about the behavior of such systems in different 
phases, we introduce an order parameter, by means of which one can construct a 
theory of transitions from a more ordered to a less ordered phase. 

Phase transitions in a nematic crystal are similar in many ways to the transition 
from a ferromagnetic to a paramagnetic state. Nonetheless, despite many analogies 
between them, there is a substantial difference in the nature of their phase transitions. 
The transition from the nematic phase to the isotropic is a transition of first kind, 
although the size of the jump of the order parameter is quite small. 

The transition from the ordered-nematic phase to the disordered-isotropic occurs 
at a higher temperature and is connected with a change in the symmetry of the system. 
The symmetry of the nematic phase is lower than the symmetry of the isotropic s tate--  
that is, the symmetry group of the isotropic phase contains the symmetry group of the 
nematic phase as a subgroup. 

Many properties of nematics can be investigated in the framework of  common 
regularities inherent in systems with spontaneous symmetry breaking. The first prob- 
lem that arises here is to determine an order parameter. The order parameter will be 
a vector n that characterizes the direction of the molecules in the nematic phase. As 
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with the Heisenberg ferromagnet, in the nematic phase the full symmetry occurs with 
respect to rotation about the vector n. In the isotropic phase, as we recall, molecules 
are oriented completely arbitrarily, consequently, there is no preferred direction of 
spatial orientation. The enlargement of the symmetry group of the isotropic liquid is 
obviously due to this circumstance. 

Let us recall the analogous situation in a ferromagnet. The order parameter in 

nematics has an additional property which, as we shall see subsequently, is of fun- 
damental significance. The states of a nematic system defined by the vectors n and 
- n  are indistinguishable. For example, if an individual molecule has a permanent 
dipole moment, then the number of  dipoles directed "downwards" is exactly equal to 
the number of dipoles directed "upward." We now have all the necessary construction 

material to describe a remarkable phenomenon, the existence of two types of defects 
in nematic systems: point and line defects. 

In sufficiently thick specimens of a nematic, line defects are visible as a system 
of dark flexible threads having a very odd configuration. Some threads move by 
bending and forming a self-intersection while others are less mobile, being fastened 
by their ends to the walls of  the container. The first investigators to observe this 
thread formation were the French physicists Franqois Grandjean (1882-1975) and G. 
Friedel, who believed that the phenomenon of threads is associated with the structure 

of a nematic and not with external causes, but it was many years before these beliefs 

were verified. 

Let us now turn from experiment to theory and try to explain the emergence of  
threadlike singularities in a nematic. This can be done by studying the topology of 
the space of the order parameter. The order parameter, the vector n, completely deter- 
mines all the states of  a nematic. A vector n is given at each point of the nematic and 
a priori is oriented completely arbitrarily. The only other restriction is that the states 
defined by the directions n and --n are indistinguishable. A vector n satisfying this 
last condition is called a director. 

Do there exist lines and points in a nematic where the director n has disconti- 
nuities? That is, do there exist threadlike and point singularities? We shall see how 
topology helps to gain an understanding of line (threadlike) singularities. Suppose 
such a thread L exists. We encircle it with a closed contour Y and map y into the 
domain of values of the order parameter. The domain of values of the order parameter 
is the domain of variation of the director n. This domain is a sphere with antipodal 

points identified. We already know that this surface is homeomorphic to the projective 
plane p2.  Corresponding to every point x of the contour the director n determines a 

point Xl in the projective plane. Given this, the contour F is mapped into a closed 
curve Y1. Let us contract the contour toward the line L (Fig. 12.2). The image of the 

contour y ,  the curve Yl, will contract toward some curve ~'2. 

There are two possibilities: Either the curve V1 can  be contracted to a point, or it 
cannot. If the curve Y2, and therefore also yl,  can be contracted to a point a e p2,  

then the vector field n(x)  defined on the curve y,  can be deformed continuously to 
the constant field n(x)  =-- a. In this case it is clear that the line L is a removable 

line singularity, because contracting the contour y to the point x0 on L causes the 
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continuous field n(x) to contract to a point lying on the line. In the second case, the 
situation is completely different. One cannot get rid of singular lines by continuous 
transformations of the field. 

The reasoning above provides a simple criterion for the existence of line singu- 
larities or, as crystallographers say, disclination. There are no line singularities if all 
closed curves in the space of an order parameter can be contracted to a point. Thus, 
in the case of  a nematic, the question of the existence of disclinations reduces to a 
purely topological problem: Do there exist closed paths not contractible to a point 
on a projective plane ? In contrast to the usual sphere, such paths do exist. Any path 
(we will denote it by Y3) joining two antipodal points of  the sphere defines a closed 
path on p2 which satisfies this requirement. One can prove that all closed paths on a 
projective plane contract either to a point or to the path Y3. 

In physics removable disclinations are spoken of as unstable structures. Distor- 
tions around such lines can always be continuously transformed into smooth struc- 
tures, but this is not possible for disclinations that correspond to paths not contractible 
to a point. 

The distinctions just noted among disclinations can be clearly observed in an ex- 
periment. Under a microscope threadlike singularities are studied in thin films of 
nematic liquid. In polarized light, as was shown in the experiments of C. Williams 
and Y. Bouligand, unstable disclinations (corresponding to contractible paths) appear 
as wide dark bands, but stable disclinations (uncontractible paths) are narrow bands. 

To study critical points in a nematic one proceeds as follows. A point x where 
the vector n(x) is not defined is surrounded by a sphere. Then the problem, as in 
the case of  threadlike singularities, is reduced to a purely topological one: How many 
homotopically distinct contraction mappings of sphere onto projective space exist? It 
turns out there exists an infinite set of such mappings, characterized by integers. 

Recalling the already familiar definition of homotopy groups, we see that the 
problem of classifying linear and critical points comes down to determining the first 
and second homotopy groups of the space of an order parameter. In topology, a tech- 
nique for computing these groups was developed long ago. 

With such methods one can investigate critical points in cholesteric liquid crys- 
tals, superfluid helium, ferromagnets, and the like. Of course, we did this in some- 
what simplified form. In order to be convinced definitively of  the existence of critical 
points, one must investigate the extent to which similar configurations are stable and 
minimize energy. If the topology of the system implies that there should be no critical 
points, however, none can exist, at least not for long. 

Liquid crystals are an ideal object for applying various topological methods. A 
more sophisticated analysis makes it possible to study the processes of adhesion, dis- 
sociation and collapse of threads in nematics and cholesterics. 

Interesting applications of  topology occur in the study of critical points associated 
with distinct boundary effects. Do critical points occur (for example, vortices) on the 
surface of nematics or smectics? One type of critical point in a nematic has already 
been examined, but point defects can also occur on the surface of a nematic, either as 
isolated points on a surface or as the ends of  disclinations inside a body. 
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Figure 12.2: Disclination in a nematic crystal. (a) L is a thread; y is a contour 
surrounding a thread. (b) Yl is the image of  the thread y under a mapping into the 
order parameter space p2; ~2 is homotopic to a noncontractible curve on the projective 
plane. The curve Y2 contracts to point a. 

Both "permissible" cases occur in nature. In the classical experiments performed 
in the early 1920s by Grandjean and Friedel a system of critical points was observed 
on the surface of  a nematic. When viewed through crossed Nicol prisms the criti- 
cal points appear as joined black bands. Friedel called these points nuclei, and he 
proposed a remarkably simple way of distinguishing types of nuclei. If a nucleus 
is observed on the surface between the nematic and the covering glass, the glass is 
moved in its plane. When a nucleus corresponds to the end of a vertical line inside 
the nematic, the line is bent and looks like a black thread. A nucleus forms as the 
ending of a singular thread in the case of  a stable disclination, an unstable disclina- 
tion disintegrates in the model. This is completely natural from a topological point 
of view. 

The situation is even more complex in cholesteric liquid crystals. Locally--that 
is, at distances of the order of  the length of molecules--a cholesteric is similar to a 
nematic. There is also no regularity in the location of the centers of the molecules, but 
the molecules themselves are oriented along an axis directed according to the director 
n (the local optical axis). In contrast to the nematic, however, a different type of 
oriented orderliness arises in the cholesteric phase. The state of the cholesteric is not 
fixed by the direction of  the director n. The director a varies continuously in space, 
describing a heliacal curve. If one somewhat schematically represents a cholesteric 
as a collection of  fiat molecular layers, then given the transition from layer to layer, 
the vector n rotates continuously, describing a spiral. This approach does not take 
into consideration the possibility of the molecules rotating to exit from the "layer." 
But for our purposes, such a simplification is completely justified. If one looks at the 
monocrystal of a cholesteric in a layer with thickness on the order of  100 microns, 
then given exposure to light, we distinctly catch sight of a spiral structure. Release 
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a ray of light along the axis of a spiral. The reflected light is circularly polarized. 
At each instant the picture of the electric field in the reflected wave is similar to a 
spiral, identical in form to the spiral of a cholesteric. If  we look at a cholesteric in a 
layer caught between two flat discs and assign tangential boundary conditions, then 
the director n will be defined by simple formulas: 

nx = cos(q0z + p),  ny = sin(q0z + $), nz = O. 

The axis of the spiral is directed along the z-axis, q0 is the wave vector, and the angle 
is determined by the boundary conditions (see Fig. 12.3). The spatial period L of the 
spiral is equal to half a step of a spiral (because the vectors n and - n  are equivalent): 

~r 
L -  

Iq01" 

For the majority of cholesterics, the magnitude of L is of the order of  3000 ,~. 
This distance is significantly greater than the length of  the molecules and is compara- 
ble to the length of a light wave, which explains the possibility of visual observation 
of the spiral structure in a cholesteric. 

Let us now turn to a study of the structure of critical points in cholesterics. Just 
as in nematics, the problem is reduced to a study of  the topology of  the space of the 
order parameter--the parameter of the degeneration of the system. 

At the outset let us define an order parameter. In essence, this was already done 
for a cholesteric included in the space between two flat disks. In general the order 
parameter is characterized by the reference frame, consisting of a set of three vectors: 
n, d, I = n x d. Here n is the director, d is the unit vector directed along the axis of 
the spiral, and ! is their cross product. To find the full domain of variation of the order 
parameter one must also consider the additional symmetry of the system relative to 
the transformations n ~ - n ,  d ~ - d ,  I ~ 1. 

How does one find threadlike and point singularities in cholesterics? The homo- 
topy techniques we discussed in the case of a nematic turn out to be very effective 
in studying critical points in cholesterics, but, of course, they are complicated by the 
nontrivial structure of  the order parameter. 

Consider first the problem of classifying point and line singularities in a volume 
of cholesteric liquid. The solution of this problem is completely known. There are 
no point defects in a volume of cholesteric liquid. The classification of line singulari- 
ties turns out to be significantly more subtle. Threadlike singularities in a cholesteric 
cannot be determined by one integer parameter. They are defined by elements of  a 
finite group--the group of unit quaternions. The quaternion group is a natural ex- 
tension of the group of complex numbers. Each complex number can be represented 
as z = x + iy,  where i = ~f-Z'j'. The numbers 1 and i are called generators in the 
group of  complex numbers. The nonzero complex numbers form a group whose group 
operation is multiplication. If the generating elements 1 and i are supplemented by el- 
ements - 1  and - i ,  and the group operation is taken to be multiplication, the result is 
a new group--a  finite group of four elements. This group is commutative, that is, the 
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Figure 12.3" A cholesteric contained between two disks a and b. A schematic rep- 
resentation of a helical structure. (Interstitial planes are drawn for a more visual 
depiction of the change of the director and do not have real physical meaning.) 

product of any two elements does not depend on the order of the factors. For the group 
of quaternions, the generators will be elements 1, i, j ,  k which are completely defined 
by assigning the rules of multiplication among themselves: i 2 = k 2 = j2 = - 1 ,  
ij = - j i  = k, ki = - i k  = j, j k  = - k j  = i. The group of  quaternions, as shown 
by the multiplication rule, is noncommutative: the result of multiplying two elements 
depends on the order of the terms. 

It turns out that in the case of  a cholesteric the group responsible for the appear- 
ance of threadlike singularities will be precisely this group of unit quaternions--the 
fundamental group of  the space of the order parameter of a cholesteric. Its noncom- 
mutativity shows up in the classification of  critical points. For example, in the process 
of adhesion there is an order in the splicing of  two distinct singular threads. 

A new class of topological problems arises in the investigation of boundary effects 
in a cholesteric. In this case it is useful to apply the techniques of homology theory. 
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Imagine that a cholesteric liquid fills a region bounded by a closed two-dimensional 
orientable surface M 2. One can then ask if vortices or critical points exist on the 
surface of a cholesteric. Let us assign boundary conditions on the surface such that 

the vector d is normal to the surface, while the vectors n and !, which are orthogonal 
to the vector d, lie in the tangent plane. The vectors n and ! form a tangent field to 
the surface. If on the surface one can define a field of tangent vectors that depends 
continuously on the points on the surface and nowhere vanishes, it is obvious that 
vortices of the vector field d---critical points on the surface M2--canno t  arise. 

The answer to the question posed is found in Poincar6's hedgehog theorem. In 
fact, that theorem immediately implies that the only manifold on which there exists a 
vector field without critical points is a torus. In all other cases, there must be critical 
points on the surface. 

So far we have solved only part of the problem. One would like to know in more 
detail the structure of the critical point on a surface. Poincar6's theorem makes it 
possible to obtain several bounds on the number and form of vortices on the surface. 
As we already know, the formation of a vortex in the vector field d corresponds to the 
occurrence of a critical point in a tangent field. An integer-- the index----characterizes 
each critical point a. To define the index of a critical point on a surface, one proceeds 
as follows. Let a be a critical point. We enclose the point a with a sufficiently small 
circle y so that the neighborhood which is obtained is planar. We orient the circle y 
in a counterclockwise direction and examine the change of the vector field n(x)  after 
one circuit of the circle. The vector n defined on the circle will make, in this case, 
a certain whole number of rotations k. This number is called the index of the vector 
field at the critical point a. 

The number k can be negative or positive depending on which direction vector n 
moves as the point moves along the circle. If the direction of movement of n coincides 
with the orientation of y ,  then k is positive; if not, then k is negative. Physicists attach 
a different form to the concept of an index and talk about quantized vortices of the 
vector field normal to the surface. In physical terms the index k of  a vector field is the 
force of a quantum vortex or the number of quanta of circulation (Fig. 12.4). 

In its full generality, the formulation of Poincar6's theorem is as follows: I fa field 
of nonzero tangent vectors defined on a surface M 2 is continuous everywhere except 
for a finite number of critical points, then the sum of indices of all the critical points 
is equal to the Euler characteristic of the surface X (M2) �9 

This theory immediately yields a number of restrictions on the types of surface 
singularities. For example, the Euler characteristic of a doughnut with two holes 
C 2 is X (C 2) = - 2 .  One obviously cannot construct vortices having only positive 

circulation on this surface. The opposite situation occurs on a sphere; here X ($2) = 2. 

From a topological point of view, the existence either of two vortices with circu- 
lation strength 1 or of one vortex with k ---- 2 is possible. Topology cannot determine 
which solution really exists. One can answer this question by considering the energy 

of the system of vortices. It turns out that a system of one vortex with two quanta 
of singularity requires less energy (Fig. 12.5). The bending of the bound state of  a 

system with two vortices is higher than that of a vortex with two quanta of circulation. 
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Figure 12.4: The index of a vector field. (a) k = 1. (b) k = 0. (c) k = - 1 .  If the 
index k equals 0, then the vector field does not have critical points. 

Since topology prohibits the existence of an isolated vortex with circulation strength 
1, two isolated critical points on a spherical surface can appear only as the ending of  
singular lines inside an object (see Fig. 12.5b). It is clear that the surface singularities 
cannot be the ends of the only vortex line since in this case they have opposite signs 
of  circulation. 

It has already been noted that a torus is the only configuration on which a field 
without critical points is possible. But this does not completely exclude the formation, 
for example, of two vortices with opposite index values. These vortices should cancel 
each other. 

The appearance of boundary critical points is characteristic of  many ordered me- 
dia. Such solutions were first discovered in one of the phases of superfluid 3He, the 
A-phase, whose order parameter space is topologically close to that of  the cholesteric 
phase. The existence of  such surface-point vortices leads to striking effects of fun- 
damental significance in the theory of ordered states. One of them is the decay of a 
superfluid current on a surface when there is a collision with a similar singularity. 

Given physicists' characteristic love of  neologisms, this phenomenon has been 
called by a number of names. The most widely accepted term, boojum, very aptly 
characterizes the enigmatic properties of  critical points. The American physicist 
D. Mermin proposed this term, having borrowed it from Lewis Carroll's poem "The 
Hunting of the Snark. ''1 (Those hunting for the mysterious Snark are cautioned to 
be careful lest the Snark turn out to be a boojum. Just what the "suddenly vanishing 
boojum" was, remains an enigma.) 

In investigating the topological structure of critical points in cholesteric crys- 
tals, we implicitly assumed the existence of  boundary conditions, fixing the vector d 

lln the article, "E Pluribus Boojum," published in the April 1981 issue of Physics Today (p. 46), 
Mermin has many interesting things to say about the history of the term boojum and about the humorous 
adventures met in trying to gain "citizenship" for the term among physicists. 
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Figure 12.5: (a) Vortex with k = 2 - - a  boojum. (b) Two vortices with k = 1. (c) 
A vector field on a sphere having one critical point at the north pole (N) and conse- 
quently an index of 2. 

normal to the surface. The possibility of choosing such boundary conditions requires 
additional considerations because, at first glance, the constant pitch of the helix pre- 
vents this. Such a problem does not arise for the A-phase superfluid 3He, where 
the reference frame of the order parameter has another physical meaning. Since the 
choice of  a cholesteric as an example of the applications of topology was due to its 
greater accessibility, I shall not dwell on these questions. 

In a narrow range of temperatures (0.1-1 K) one of the most interesting and 
mysterious liquid crystals lies between the cholesteric and isotropic liquid---the so- 
called blue phase, more precisely three varieties of blue phases--phases I, II, and III. 
The blue phase was discovered by the original discoverer of liquid crystals Fridrich 
Reinitzer (1857-1922) almost simultaneously with his observation of nematics and 
cholesterics, but it remained a little-studied object for a long time. The blue phase 
takes its name from its remarkable optical properties. When it is illuminated with 
polarized light, a selective scattering (Bragg reflection) is observed in the visible part 
of  the spectrum, primarily in the blue range (which does not preclude seeing orange 
or red light). The presence of Bragg reflection indicates a certain periodicity in the 
structure of  the blue phase. And indeed, the blue phase combines spatial periodic- 
ity with local cholesteric behavior. However, in contrast to the cholesteric, in which 
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the director describes a spiral, the tensor order parameter of the blue phase, which 
characterizes the correlation in the orientation of molecules, has spatial periodicity. 
This ambiguity leads to a significant complication of the structure of the blue phase 
and in particular in the structure of the defects that form the doubly periodic system. 
While a description of types I and II of the blue phase can be obtained in the context 
of the modified Landau theory, in no way can this be said of phase III, which is called 
the "fog" phase, and cannot be incorporated in the general theory. In regard to its 
properties the "fog" phase is closer to an isotropic liquid, but may be connected with 
a weaker symmetry of icosahedral type. If this is confirmed, we shall have obtained 
an exotic example of a liquid quasicrystal. Realizations of the most arcane geometric 
objects seem to be possible in the blue phases, in the form of textures and defects. 

The other class of liquid crystals, smectics, is characterized by a constant distance 
between layers that naturally prevents the application of homotopy methods because 
the contracting of contours is possible only in separate layers. 

The French mathematician V. Poenaru has suggested using the theory of foliations 
for classifying singularities in foliated media. The theory of foliations, which studies 
the qualitative structure of hypersurfaces with attached vector fields, is a compara- 
tively new branch of mathematics. It includes as a special case the qualitative theory 
of differential equations; but so far there have been too few concrete applications of 
the theory of foliations to mention them in popular literature. 

Yet another area of application of topology has been discovered comparatively 
recently. The experimental discovery of the superfluid state of 3He was an important 
event of the 1970s. The possibility that 3He could make the transition to a superfluid 
state was predicted in 1959 by the Soviet physicist L.P. Pitaevskii, but it was only 
twelve years later that the American physicists D. Osheroff, R.C. Richardson, and 
D.M. Lee succeeded in obtaining superfluid liquid 3He at fantastically low tempera- 
tures, on the order of 2 x 10 -3 K. The scientists who made this remarkable discovery 
were awarded the Nobel Prize twenty-five years later (in 1996). The appearance of 
superfluidity in 3He is connected with the same effects of Cooper pairing of the Fermi 
system that one finds in superconductivity; but whereas in superconductivity Cooper 
pairs have a full spin of 0, in 3He the spin equals 1. A striking property of superfluid 
3He, detected experimentally and also predicted theoretically, was the appearance of 
several phase transitions. At temperatures of the order of 2.6 x 10 -3 K, 3He will be in 
one thermodynamic phase, the A-phase, but given a further lowering of temperature 
to 2.1 • 10 -3 K, it changes to a different phase--the B-phase. These phases possess 
different properties. For example, the A-phase is anisotropic while the B-phase is 
isotropic. 

It is quite significant that in a neighborhood of the points of a phase transition the 
equations of a state admit a macroscopic description by means of equations analogous 
to the Ginzburg-Landau equations in the theory of superconductivity. 

It was shown that a series of important characteristics of the superfluid phase of 
3He follow from topological and group considerations of the space of the order pa- 
rameter. The order parameter is given by a complex 3 • 3 matrix. The dimension 
of the order parameter space is 18. This space contains the domains of variation of 
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the order parameters of the A-phase and B-phases, which have dimensions 5 and 4, 
respectively. In the context of a phenomenological description of superfluid 3He, a 
change of the topological properties of the thermodynamic A- and B-phases is ob- 
served. In this situation additional fields are used, in particular, a magnetic field. 

Point defects arise in the superfluid phases of 3He. They are classified by using 
the same methods that apply in the theory of liquid crystals, but, of course, they are 
complicated by the higher dimensionality of the order parameter space. Problems 
of another type arise with 3He. For example, it is not yet clear how many distinct 
thermodynamic phases there can be. Thus far three phases have been found. Be- 
sides the A- and B-phases, an Al-phase was recently detected in a powerful magnetic 
field. Many physicists have attempted to make a theoretical estimate of the number of 
phases in 3He. EA. Bogomolov and the present author, using a special group-theoretic 
construction, have proved that the maximum possible number of phases is 11. Our 
method develops an approach of V.L. Golo and the author, who showed that the phases 
can be associated with the orbits of the free energy potential--the Ginzburg-Landau 
potential. The advantage of the proposed construction is that it gives both a proof 
of the completeness of the resulting classification and an explicit description of the 
discrete invariants of the phases (the discrete subgroups of the stationary groups of 
orbits), which characterize the topology of the defects in 3He. Of course, only ex- 
periment will reveal which of the phases thereby found are realized in nature. These 
questions are discussed in detail with citations of the original works in the book [Mo]. 

Very interesting problems arise in the fluid dynamics of superfluid 3He. In essence, 
we are lacking a complete system of equations to describe the behavior of superfluid 
liquids in the presence of vortices and other singularities, the existence of which fol- 
lows from topology. 

One can obtain more detailed results for steady-state solutions--those which do 
not depend on time. Recently, the problem of spatially one-dimensional steady-state 
solutions in the A- and B-phases was solved. It was shown that the corresponding 
equations are equivalent to equations of a mechanical top with variable axes of inertia. 
Such solutions describe phenomena which occur in very narrow capillaries filled with 
superfluid 3He. 

The last ten or fifteen years have seen an intensive study of vortices in superfluid 
3He. In contrast to 4He, vortices in 3He have a very large core, in which different 
phases can coexist. Oversimplifying a bit, one might say that in the core of a vortex 
the same processes occur as in the bulk 3He. The theoretical analysis of the struc- 
ture of vortices is based on a combination of topological ideas and analogues with 
quantum field theory. Essentially 3He is a complicated nonlinear chiral field model 
with a multidimensional order parameter concealing deep mathematical and physical 
structures. A remarkable characteristic of studies of 3He is the unity of theory and 
experiment, which is rare in our time. On the cryostat built in low-temperature labo- 
ratory at the University of Helsinki experiments have been conducted on rotating 3He. 
Very exotic vorticial states have been observed: for example, vortices in the B-phase 
with half-integer quanta of singularity and vorticial surfaces. These phenomena had 
been predicted theoretically, and the experimental results in turn were a powerful im- 
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petus to the development of the theory. Experimental and theoretical studies of 3He 
being conducted in the USA, Finland, France, Russia, and a number of other countries 
will undoubtedly yield new discoveries of fundamental value. 

Very promising applications of these methods have been discovered recently in 
astrophysics during investigation of the structure of pulsars, white dwarf stars, and 
other superdense stars. A well-known example is a neutron star. The nucleus of a 
neutron star, given pressure of the order of 1014 g/cm 3 and temperature T = 10 9 K, 

is in a superfluid state. The properties of superfluid nuclei resemble those of super- 
fluid 3He. 

It is natural to expect that methods developed in the theory of 3He will prove use- 
ful also in this new area. It is especially interesting to study the structure of vortex 
solutions in the nucleus of a neutron star. The formation of vortices in a rotating 
neutron star leads to interesting observational effects. One possible explanation of 
the fluctuation of the period of the pulsar in the Crab Nebula is related to this phe- 
nomenon. Astrophysicists identify this pulsar as a neutron star. A lattice of vortex 
threads forms in a rotating neutron star, while (as the Soviet physicist V. Tkachenko 
has shown) an acoustic wave should form in such a system and propagate in a plane 
perpendicular to the vortex threads. The period of the Tkachenko wave, calculated 
for the pulsar of the Crab Nebula, agrees well with the characteristic parameters of a 
neutron star. 

Topological methods entered the realm of physics known as the theory of ordered 
media in June 1976, in the letters section of the French Journal de Physique. The 
journal contained a short note by the French physicists M. K16man and G. Toulouse, 
entitled "Principles of a classification of defects in ordered media." This note con- 
tained their announcement of results on the classification of line and point defects 
in ordered media--in particular, they considered nematics and the A-phase of super- 
fluid 3He using homotopy methods. This work initiated feverish activity in applying 
topology to condensed-matter physics. 

The universal and instant recognition of the effectiveness of topological methods 
has elicited a certain surprise. The marked conservatism among physicists in regard 
to the application of new, or more precisely, unaccustomed mathematical methods 
is well known. In addition, a large part of the results obtained were already known 
to physicists in one form or another. For example, the classification of singulari- 
ties in cholesterics, had been obtained earlier by K16man and J. Friedel (grandson of 
G. Friedel). In essence, the classification of threadlike singularities, achieved in the 
1920s using the Frank index, is purely topological. 

Nonetheless, the precise understanding of the topological nature of the occurrence 
of defects and the application of corresponding mathematical techniques have led not 
only to a refinement of the former classification schemes and the removal of several 
gaps, but also to new results in systems of 3He type with multidimensional degenera- 
tion of the order parameter. 

In this chapter I have been able to give only the most general idea of applica- 
tions of topology. In essence we are talking about using two principles of topology: 
homotopy theory and homology theory. The time has now come for more subtle 
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applications. For example, the methods of Thom's  catastrophe theory may prove to 
be useful in studying the interaction of several singularities in cholesterics or in the 

description of the caustics that arise in the irradiation of patterns and defects in ne- 
matics [JR], [JMR]. In the physics of ordered media there remain many unsolved 
problems which are interesting from the point of view of topology. Our next chapter, 
however, will deal with a different area of physics, quantum field theory. 

The significant application of homotopy theory began two years earlier. Perhaps 
this provides a psychological clue to the recognition of topology in the physics of 
solids. 2 

2At the end of the article cited above, Toulouse and Kl6man wrote that they had discovered a use 
of analogous methods in field theory in the 1974 work of Perelomov and the author on classifying 
monopoles of 't Hooft-Polyakov (see the chapter "Topological Particles") and in the 1959 work of D. 
Finkelstein and C.W. Misner about conservation laws in gravitation theory. 



Chapter 13 

Theory of Gauge Fields 

T HE basis for all contemporary theories of elementary particles is the concept of 
a field. For each elementary particle there is a corresponding quantum field, and 

the interaction of elementary particles is defined by the interaction of quantum fields. 

The quantum theory of light is an example of the most consistent embodiment of 
these ideas. The concept of light as a beam of elementary particles, of photons, can 
be combined with the wave picture, by imagining that a free electromagnetic field is 
quantized. The energy of an electromagnetic field is equal to the sum of the energy of 
the elementary "pieces" of the field---electromagnetic field quanta. Electromagnetic 
field quanta are photons. A quantitative relation between the energy of a photon e and 
the frequency v of the corresponding field is given by the well-known Planck-Einstein 
formula e = hv where h is the Planck constant. 

The quantization procedure gives meaning to the concept of a single photon. One 
can talk about processes of emission and absorption of photons. For example, one can 
present the interaction of two electrons as a photon exchange process. Thus, the first 
electron "emits" a photon, while the second electron "absorbs" it. 

A broad range of phenomena exist where the interaction of elementary particles 
with light plays a decisive role. Such interactions are called electromagnetic. The the- 
ory of these processes constitutes the subject of quantum electrodynamics. A quantum 
description is possible due to the relatively small magnitude of electromagnetic inter- 
actions. This magnitude is described by the fine structure constant, usually denoted 
by a. The constant ot is dimensionless and equal to e2/hc; its value is 1/137. 

The basic mathematical apparatus of quantum electrodynamics has become per- 
turbation theory, which makes it possible to calculate all physical quantities by ex- 
pansion in a series of powers of or. 

The idea of quantum electrodynamics has been triumphantly confirmed by many 
experiments. It suffices to mention the measurement of the magnetic moment of an 
electron. Its theoretical value coincided with the experimental value with an accu- 
racy of one hundred-thousandth of one per cent. The successful application of the 
perturbation theory in quantum electrodynamics did not increase the interest of active 
physicists in the more rarified areas of mathematics. A situation developed analo- 
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gous to that in quantum mechanics in the 1930s. The Swiss physicist R. Jost wittily 
characterized it: 

In the '30s, under the demoralizing influence of the quantum-mechanical 
theory of perturbations, the need of theoretical physicists for mathemat- 
ical knowledge came down to a rudimentary mastery of the Latin and 
Greek alphabets. 

As with any good joke, this witticism should not be taken literally. The tech- 
niques of Feynman diagrams, underlying the invariant theory of perturbations, con- 
tains mathematical profundity, but its strength is that it makes it possible to obtain 
fundamental results in physics without being entangled in a morass of mathematical 
reasoning. 

Two "clouds" still remained in elementary particle physics, however. Besides 
electromagnetic interactions, two other types are distinguished: weak and strong in- 
teractions. In contrast to the long-range electromagnetic field, weak and strong inter- 
actions are short-range. The range of strong interaction is approximately 10 -13 cm. 
This is the order of the diameter of a strongly interacting particle. If one takes the 
magnitude of strong interaction at this distance as a unit, then the electromagnetic 
interaction is 137 times weaker than a strong one while a weak interaction amounts 
to only one millionth (10 -6)  of  a strong interaction. There also exists a fourth force 
(gravity), the weakest of all, with magnitude 10 -39 times the magnitude of a strong 
interaction. It acts on the scale of the universe as a force of attraction. The whole 
complex world of elementary particles, including the processes of scattering, cre- 
ation, annihilation, and transformation of particles into one another is governed by 
the four fundamental forces. 

The distinction of interaction types, in particular the classification into strong and 
weak interactions, is largely a matter of the magnitude of the interaction and the na- 
ture of the physical processes. A force of interaction is determined by characteristic 
scales and invariant charges (strong) gs and (weak) gw. These charges play the role of 
coupling constants, but depend in general on the distances between the particles, or, 
what is the same, on the momenta q transmitted. 

As q increases (that is, the distances decrease), the quantities gw and gs decrease, 
and at certain values q "-~ 1015 GeV they become equal. As q increases further 
the charges g, and g~ tend asymptotically to zero. At the same time the constant 
of electromagnetic interaction (electric charge) e increases and at the same energy 
(1015 GeV) all three charge invariants are equal. Thus at this energy one can speak of 
the unification of all forms of interaction. But at this energy level the gravitational in- 
teraction is still too weak. It becomes the determining factor at energies -,~ 1019 GeV. 
This scale is referred to as the Planck scale. 

Unfortunately analysis of gravitational interaction in this case precludes any ex- 
perimental test under laboratory conditions. No future accelerators, much less any 
present accelerators (which attain maximum energies of 103 GeV) will even approxi- 
mate the Planck energy. For that reason the only "experimental foundation" for testing 
theoretical conceptions of the behavior of particles on the Planck scale lies in astro- 
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physics. The theory of the origin of the early Universe (the Big Bang) predicts that in 
the first few instants when the Universe was being formed its temperature was on the 
order of the Planck scale. 

A physicist's fondest wish is to construct a unified theory of elementary particles 
that will include all types of interactions. At present, no one will predict when such a 
theory will be created, but impressive successes have been achieved in this direction. 

It would have been very difficult to progress if it were necessary to consider the 
effects of all forces at once, but Nature has met us halfway. It is quite clear that on 
the nuclear scale the influence of gravitational forces is completely negligible, and 
therefore one can disregard them at first. A second happy circumstance is the rel- 
ative independence of weak and electromagnetic interactions, on the one hand, and 
strong interactions, on the other. A whole class of elementary particles exists which 
participate in weak and electromagnetic interactions but not in strong interactions. 
Such particles are called leptons, examples of which are the neutrino, electron, and 
/z-meson. The majority of well-known elementary particles participate in strong in- 
teractions, for example, the proton, the neutron, the Z-particle, the recently discov- 
ered J/~O-particles and the K-, zr-, and p-mesons. Strong interactions are sometimes 
called nuclear because they determine the bound states of neutrons and protons in a 
nucleus. It does not follow that elementary particles taking part in various processes 
remain entirely distinct. For example, a proton participates in strong interactions, but 
to the extent that it is electrically charged, it reacts to an electromagnetic field. It also 
appears in the fl-decay of a neutron--a weak interaction. There is a strict distinction 
in physics between the theory of strong interactions on the one hand, and weak and 
electromagnetic on the other, which, in a first approximation, makes it possible to 
study these processes separately. 

Nonetheless, all modern theories of elementary particles share one common 
idea--the concept of gauge invariance. 

The classical example of a gauge theory, which has existed for more than one 
hundred years, is Maxwell's theory of electromagnetism. One can write the Maxwell 
equations using a four-dimensional vector potential A~,. It turns out that the equations 
do not change if we add to A u the derivative of an arbitrary function of the coordinates 
of four-dimensional space-time: 

A u ~ A  u-Our l (x )  ( / z = 1 , 2 , 3 , 4 ) .  

This property is called the gauge invariance of Maxwell's equations. It plays a funda- 
mental role in electrodynamics, placing strict limitations on the form of the equations 
of motion. 

Gauge transformations of the field A~ form a group--the gauge group of equa- 
tions of electrodynamics. 

It is known that conservation laws are connected with the presence of a symme- 
try group. Global symmetry groups, which act on the whole space, are distinguished 
from groups generated by transformations in a neighborhood of some point, which 
are called local symmetry groups. The former are defined by global conservation 
laws: conservation of energy, momentum, and so forth. The latter are defined by the 
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invariants of  gauge fields. For example, conservation of electric charge for an inter- 
action with a gauge field A u is associated with the gauge transformations mentioned 
above. In electrodynamics the charge of  an electron e plays a dual role. The conser- 
vation of electrical charge in electromagnetic interactions limits the types of reactions 
of elementary particles; at the same time, it plays the role of a single "coupling con- 
stant," that is, it defines the magnitude of the interaction. Moreover, assuming that 
the interaction between particles is defined by a gauge field and assuming an electric 
charge, all the remaining characteristics of particles, for example, magnetic moment, 
are consequences of the equations of  motion. 

In 1954 the American physicists C.N. Yang and R.L. Mills proposed a model of 
strong interactions, introducing a new class of gauge fields. The Yang-Mills theory 
was originally intended to describe forces binding nucleons--protons and neutrons. 
Protons and neutrons possess a remarkable peculiarity that makes it possible to regard 
them as identical in strong interactions. This property had been observed earlier in the 
context of quantum mechanics and was called isotopic invariance. A proton p and a 
neutron n are two states in which a nucleon can be found. One state, the proton, has a 
positive electrical charge; the other, the neutron, is neutral. 

For the characteristics of  the two distinct "charged states" p and n of  a nucleon, 
a special vector r is introduced. The projection of the vector r onto a fixed axis in 
three-dimensional space admits only two values: + 1 / 2  and - 1 / 2 .  By convention the 
value + 1 / 2  is assigned to a proton and - 1 / 2  to a neutron. The vector r is called the 
isospin vector because by its properties it is similar to the usual spin 1/2, but it has 
a completely different physical nature. The isospin vector lies in an auxiliary space 
created by the wave functions of the proton and the neutron--the space of states of a 
nucleon. This is the isotopic spin space. 

The space C 2 contains the transformation group 

IP') = ~ l l lP>  +oq2ln) 

In') = a211P) +~221n). 

Here the Olij a r e  complex numbers satisfying additional relationships: 

OlikOlkCj = ~ij, det(~ij) = 1. 

It is called the isotopic group of the nucleon or simply the isospin group. The standard 
notation for it is SU(2). Transformations from the group SU(2) do not change the state 
of a nucleon. This is the definition of  isotopic invariance. 

The conservation of isotopic invariance is characteristic of strong interactions, 
during which proton-neutron (pn), neutron-neutron (nn) and proton-proton (pp) sys- 
tems appear completely identical. Isotopic symmetry is broken only in cases of  elec- 
tromagnetic interactions. We recall that a proton is positively charged, while a neutron 
is electrically neutral. This leads to a small difference in mass. The mass of a neutron 
is "~ 939.6 MeV, and is 1.3 MeV larger than the mass of a proton (1MeV = 10-6erg.) 
Isotopic invariance is one of the internal symmetries of elementary particles because 
it is not connected with the kinematics and dynamics of nuclear reaction. 
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A whole series of other quantum numbers are known--quantities that are con- 
served in strong interactions and which have the character of internal symmetries. For 
example, an important characteristic, which separates strongly interacting elementary 
particles into two classes, is the baryon number or baryon charge A, analogous to the 
mass number of a nucleus known in atomic physics. The mass number is the number 
of neutrons and protons comprising a nucleus. For neutrons and protons, the baryon 
charge A is 1. A particle with A = - 1  is called an antibaryon. Mesons have A = 0. 
The conservation law of baryons asserts that the total value of A does not change 
in any process. Baryons cannot be destroyed or created, with the exception of the 
processes of the annihilation of a baryon and an antibaryon or the creation of a pair. 

Yang and Mills had a bold idea. They suggested that certain internal symmetries 
have a local, as well as a global, character. 

In their 1954 paper Yang and Mills showed that the properties of nuclear forces 
connected with isotopic symmetry and consequently, together with the indistinguisha- 
bility of a neutron and a proton, are preserved under much more general transforma- 
tions. Transformations of the isospin vector can occur independently at each point of 
space-time. 

These transformations form a group isomorphic to the group of transformations 
of isospace, but they act in a neighborhood of each point of space-time. This group, 
the local isospin group, is noncommutative. The property of noncommutativity turns 
out to be very significant in the development of the theory. 

With this background, one can now explain the Yang-Mills scheme: strong in- 
teractions are constructed in analogy with electrodynamics, but taking account of the 
specific characteristics of a noncommutative gauge group, the isospin group. 

An analog of the gauge field A u for strong interactions will be the gauge field 
W, defined by properties of gauge invariance of equations relative to the local isospin 
group. Just as in electrodynamics, the interaction can be pictured as an exchange of 
massless particles. But in the case of electrodynamics, the gauge field is the electro- 
magnetic field A u and the particles participating in electromagnetic interaction ex- 
change a photon. In strong interactions the massless field W~ is a vector in relation 
to isospin transformations. Yet another important difference between the Yang-Mills 
field W u and an electromagnetic field is connected with the noncommutativity of the 
isospin group. An electromagnetic field interacts directly only with charged external 
particles, but in a Yang-Mills field different components of the field interact with one 
another. 

All these physical considerations are realized in the Yang-Mills Lagrangian, more 
precisely, the density for the Lagrangian s which we write out for the simplest 
isospin group SU(2). We denote the Yang-Mills field intensity by F ~  (where/z, v = 
1, 2, 3, 4 are spatial indices and a = 1, 2, 3 are isotopic indices). Then 

Fu~ = OuW ~ - a~W~, + g[W u, W~]. 

Here g is the coupling constant, [W u, W~] is the commutator of the fields, 

w d  b = 
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(Here and below, summation over repeated indices is assumed.) W~, = Writ a, where 
t a are the generators of the Lie algebra of the group SU(2). They can be expressed in 
terms of the Pauli isospin matrices. We give the density LeM in the form 

/~YM = - T r  (F~,~F~). (13.1) 

This scalar quantity is invariant relative to the gauge transformations F#v ~ g F ~ g  -1, 
g E SU(2), and is called (the density of) the Yang-Mills Lagrangian. The Lagrangian 
ff-~YM can also be easily written out for an arbitrary gauge Lie group G by replacing 
the generators t a with the generators of the Lie algebra of the group G. 

The work of Yang and Mills did not receive immediate recognition. The principle 
of gauge invariance is easy to realize in electrodynamics. The massless particle asso- 
ciated with the gauge field is the photon. In practice it is easy to verify its existence 
by glancing through a window or turning on a light. However, other vector massless 
particles do not seem to occur naturally. Therefore, the majority of pragmatically 
minded physicists did not take the Yang-Mills theory seriously. Ten years passed be- 
fore events in the world of elementary particles forced all theoreticians to recall the 
work of Yang and Mills. 

In 1964 two theoretical discoveries were made. One of them was called quark 
theory; the other was called the "Higgs effect" or the "Higgs mechanism." Quark 
theory acquired a sensational reputation. The world's largest news agencies made 
announcements about quarks, major articles in journals like Newsweek were devoted 
to them, ballet pantomimes were staged, and so forth. The Higgs effect became the 
property of only a narrow circle of specialists, but after only a few years theories 
appeared in which the Higgs mechanism rendered a major service to "quark" theory. 

Quarks were invented independently by two physicists, the American theoretician 
M. Gell-Mann and the Swiss G. Zweig. 1 Attempting to introduce order into the more- 
than-slightly confused world of strongly interacting particles, Gell-Mann and Zweig 
proposed that all particles participating in strong interactions---called hadrons--are 
compound particles. In the original Gell-Mann/Zweig scheme, there were three fun- 
damental particles, q-{u(up, d(down), s(strange)} quarks. It was suggested that quarks 
(q) are the components of all observed particles. More precisely, in order to represent 
all particles it is necessary to introduce antiquarks ~ as well. Then all baryons B con- 
sist of three quarks: B = qqq, -B = qqq, while mesons consist of quark/antiquark 
pairs: M = q~. 

Quarks must have very unusual properties; for example, they have a fractional 
electrical charge. Attempts over many years to observe free quarks have not been 
successful. It is true that occasionally sensational reports have appeared in print about 
the detection of particles with fractional electrical charge, but more thorough verifica- 
tion has not supported these observations. A natural question arises: Do free quarks 
exist? At present the answer is approximately as follows: They are too important for 
physicists to get along without them. 

1The name quarks for these hypothetical particles was proposed by Gell-Mann, who borrowed it 
from James Joyce's Finnegan's Wake (New York: Viking Press, 1939), which contains the puzzling line, 
"Three quarks for Muster Mark!" (p. 383). The term aces, invented by Zweig, did not catch on. 
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All contemporary models of strong interactions are based on quark models, but the 
original picture of their properties has undergone considerable change. The discovery 
of a large number of new hadrons has led to a significant complication of the theory. 
Three quarks are not sufficient to construct all the new particles that have arisen. One 
must introduce yet another--a fourth quark. It is called charm. The latest schemes 
already involve a fifth quark, and it is likely that this is not the end of the matter. 

The J/~p mesons consist precisely of c~-pairs. The discovery of heavier baryons 
and mesons with explicit charm of type ct~ required the introduction of new quarks 
called b-(bottom-), and t-(top-) quarks. A spectacular confirmation of the quark 
model was the successive experimental discovery of additional quarks. The last t- 
quark was found in 1995, in experiments performed by two groups of researchers: 
the CDF and DO collaborations on the Tevatron at the Fermilab in Batavia, Illinois. It 
turned out to be very heavy, with mass ~ 1756 GeV. It is no wonder that the detection 
of the top-quark is possible only on the most powerful accelerator in the world (the 
p/3-collider, with a center-of-mass energy of about 1800 GeV. Thus, at present all 6 

quarkspredictedbythe~ C 

The generally recognized current model of strong interactions is quantum chro- 
modynamics. The very name contains an analogy with quantum electrodynamics. 
The fundamental ideas of this theory will become clearer after a more detailed clas- 
sification of quarks. The terminology in the field of quarks is exceptionally colorful. 

i is a complex particle. It possesses two degrees of freedom. The "modern" quark qj 
One degree of freedom is associated with isotopic parameters. The number of indices 
i is determined by the number of quarks. The corresponding states are called flavors. 
A second degree of freedom is called color. Each of the Gell-Mann/Zweig quarks, 
p, n, )~, can be found in three color states forming a colorless hadron. Originally 
Gell-Mann proposed coloring quarks with the colors of the American flag: red, white 
and blue. The set of colors that eventually became generally accepted corresponds to 
the three primary colors of visible light: red, blue and yellow. Their combination pro- 
duces white light. Therefore, three colored quarks give a "white" or, more precisely, 
colorless baryon. If the complementary colors are assigned to antiquarks--the antired 
is green, the antiyellow is violet, and the antiblue is orange, then the colorless anti- 
quark will be a meson--the combination of a colored quark with the corresponding 
anticolored antiquark. 

Each of the two degrees of freedom is associated with its own symmetry group. 
It turns out that colored degrees of freedom participate in strong interactions while 
flavors are associated with weak interactions. 

It is still too early to talk about an analogy with electrodynamics. How can one 
describe quark interactions? The interaction between colored quarks is defined by 
an additional gauge field, the Yang-Mills field. This field is distinguished formally 
from that introduced earlier: The symmetry group of colored states is larger than the 
isospin group. 

The symmetry group of color is the group SU(3), the group of special unitary 
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3 x 3 matrices. 2 The group SU(3) has dimension 8. From general considerations it 
follows that there must be eight components in the gauge field. This field is called a 
gluon field precisely because it glues the quarks together. The properties of a gluon 
field are very unusual. It is massless and carries a color charge. 

If we return to real physics and try to determine how all these constructions cor- 
respond to reality, complicated problems arise that are still unresolved. For example, 
the fact that quarks have not been observed at any attainable energy forces one to 
suppose that they cannot exist as free particles. It has been suggested that strongly in- 
teracting quarks can "escape" from hadrons only as colorless groups. This proposed 
hypothesis has been called the problem of confinement. The gluon field ought to be 
the "mortar" that keeps the quarks inside. 

The equations of quantum chromodynamics possess one remarkable feature that 
encourages optimism. At small distances, quarks that interact by means of of Yang- 
Mills gluon fields behave like free point particles. This feature is inherent in all Yang- 
Mills equations with a non-Abelian (noncommutative) gauge group and is called 
asymptotic freedom. 

At large distances the interaction grows without bound and, one would think, 
ought to keep the quarks from escaping. Another vexed question is associated with 
the observation of a gluon field. In August 1979 a communication from the DESY 
accelerator in Germany reported observing the disintegration of an electron-positron 
pair into hadrons, which can be interpreted as the manifestation of a gluon field. These 
results were later repeatedly confirmed and now form the basis of the modern picture 
of the nature of elementary particles. 

Let us leave the theory of strong interactions and move to the theory of weak and 
electromagnetic interactions. The phenomena associated with weak interaction are 
the same age as atomic physics. The first and best-studied process, the reaction of 
fl-decay, was discovered at the turn of the present century. The process of/3-decay 
is also called E-radioactivity because it is characteristic of radioactive nuclei. In a 
typical E-decay reaction in a nucleus, a neutral particle--a neutron--spontaneously 
decays into a proton and an electron (a 13-particle). The positively charged proton 
remains in the nucleus; the charge of the atom in this case changes by one. 

The nature of the process of/%decay was not understood until many years after 
the first experiments and is associated with dramatic events. The E-decay reaction 
threatened one of the most stable laws of physics--the law of conservation of energy. 
Suppose that the E-decay reaction proceeds according to the scheme 

n~--~ p + e - .  

The energy of neutron decay, that is, the energy of a proton and electron, is signifi- 
cantly less than the energy of the neutron. This also violates the proper connection of 
spin in the steady state because spin and angular momentum are not preserved. For 

2The group SU(3) consists of complex matrices A of the order 3 with the additional relations AA* = 
A*A = 1, A = ( a i j )  and A* = (,~ji), where the bar indicates the operation of complex conjugation and 
1 is the identity matrix. 
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example, a neutron, a particle with spin of 1/2, decays into two particles with a total 
spin of  1. 

Physicists found themselves with a complex problem. In discussing the problem 
of fl-decay, the famous scientist Peter Debye said, "It is better not to think about it at 
all---like new taxes." The deliberations of  a group of  the most prominent physicists in 
Tiibingen in 1930 were interrupted by a telegram from Wolfgang Pauli, who proposed 
a wonderful solution to the problem: There must be yet another particle. This particle, 
which Enrico Fermi later dubbed a neutrino, possesses very unusual properties: it 
has rest mass equal to 0, it moves with the speed of light, with spin of 1/2, and is 
electrically neutral. 

Pauli's brilliant guesswork is especially remarkable if one remembers that in 1930 
there were only two elementary particles: the electron and the proton. It was another 
two years until the neutron was discovered by James Chadwick, and 26 years would 
pass before the discovery of the neutrino itself. 3 Even so prominent an authority as 
Niels Bohr leaned toward the idea that conservation laws might possibly be violated 
in elementary processes in the nucleus. 

Using the neutrino hypothesis, Fermi constructed a theory of 13-decay, the first 
theory of weak interactions, fl-decay is viewed as the reaction n ~ p + e + + 
where ~ is a neutrino, or more precisely, an antineutrino, a particle that differs from 
a neutrino only in one quantum number (the lepton charge). Fermi's theory is based 
on "form and likeness," as is quantum electrodynamics. In his theory Fermi pro- 
posed that direct (contact) interaction between particles occurs without the exchange 
of any sort of auxiliary particles. If we denote the wave functions of these parti- 
cles by ~Pe, ~P,,, ~p, and ~p~, then the transition amplitude in 13-decay is described as 
gOPj~p~Pe(Pv), where g is the four-Fermi coupling constant. The Fermi constant is 
the dimensional constant g --~ 10-5m~ 2, where mp is the mass of a proton. In the 

usual units, g = lO-5h3c3m~ 2 ~ 10-5GeV -2 = 10 -49 erg �9 cm 3. One would think 
that such a small amount of  coupling would bring joy to everyone. Recall that the 
success of calculations in quantum electrodynamics is due to the smallness of the 
fine structure constant-- i /137.  Unfortunately, in the theory of weak interactions, the 
situation is fundamentally different. 

Expansion into a series using perturbation theory makes sense only given a dimen- 
sionless parameter. Here such a quantity is s = gE 2, where E is energy. Therefore 
this parameter increases as the energy increases, and calculations based on perturba- 
tion theory become nonsensical. Nonetheless, in a majority of experiments with weak 
interactions, where the real energies are relatively small, estimates based on Fermi's 
theory lead to excellent agreement with experiment. 

Theoreticians, of course, were not satisfied with such a state of affairs. They 
proposed to get around the difficulties caused by the discrepancies by introducing 
an additional particle--the carrier of interaction. This particle was supposed to per- 
form the function that the photon performs in electrodynamics, but, considering the 

3The neutrino was discovered in 1956 by Frederick Reines and Clyde Cowan, Jr., in experiments on 
the Savannah River heavy water reactor in South Carolina. Not until 40 years later did Reines receive 
the Nobel Prize for this discovery. Sadly, Cowan did not live to see that happy moment. 
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specific character of weak interactions, to possess a series of rather "strange" proper- 
ties. These particles are called W-mesons (or W-bosons). We now list the properties 
of W-mesons: 

1. W-mesons have to be massive in order to imitate contact interaction at small 
energies. 

2. They must have an electric charge because a transfer of charge occurs during 
weak interactions between particles. 

3. A W-meson field must be a vector field. 

To construct a theory with such unusual entities as W-mesons proved to be far 
from simple. The natural candidate for the role of a W-meson field the triplet field 
of  Yang-Mills---consists of massless particles. Because we want to include elec- 
tromagnetic forces in our consideration, it is necessary to introduce massless gauge 
fields, that is, photons. At the same time the theory should not give rise to irremovable 
nonphysical infinities; as physicists say, the theory ought to be renormalizable. 

A way out of the situation was proposed in 1964, as often happens in science, 
by several physicists at the same time. They called this "magical transformation" 
of  the massless particle into a heavy particle the Higgs effect in honor of  one of its 
discoverers. 

The basic ideas underlying the Higgs effect are fairly clear and are associated 
with two concepts we have already considered. The first is spontaneous symmetry 
breaking; the second is the concept of  a gauge field. We will take them in order. 
The effect of  spontaneous symmetry breaking in field theory occurs also in problems 
of  statistical physics. In essence, several systems in solid state theory correspond to 
special models in field theory. The example we have already seen of  the Heisenberg 
ferromagnet appears as a model of field theory defined on a two-dimensional lattice. 
Let us see how the breaking of internal symmetry occurs in the simplest case of a 
scalar field in two-dimensional space-time. Two-dimensional space-time assumes the 
presence of only two coordinates: space (x) and time (t). For our purposes they are 
completely adequate. Let us make yet one more stipulation. We shall study classical 
field theory. The transition to quantum fields is a separate, very difficult question. 
Nonetheless, the terminology of  quantum mechanics is used here since it is convenient 
for comparison with real theories. 

As in ordinary mechanics, the equations of motion are defined by the Hamiltonian 
H = T + U, where T is kinetic energy and U is potential energy. We shall choose H 
to be 

The potential U(~b) is 

H = 1/2(3t~b) 2 -t- 1/2(3xC~) 2 -t- U(dp). 

/.s ~" 4 
u(~) = T ~  2 + ~ .  

Here ~. > 0, but #2 can be negative as well as positive. 

(13.2) 

(13.3) 
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Figure 13.1: Graph of the potential U = (~2/2)dp2+(~./4)#p4. (a)#2 > 0. (b)/x 2 < 0. 
(c) U ( A ,  B)  = ~.(A 2 + B 2 - a2). The graph of the potential U (A,  B )  is similar to the 
bottom of a bottle of "Napoleon" cognac. Vacua fill out the groove at the bottom and 
satisfy the equation A 2 + B 2 = a 2. The field A describes small radial perturbations of 
the system relative to point a while field B describes tangential perturbations (along 
the tangent to the vacuum groove). 

The state with the smallest energy will be called the vacuum of the system and 
denoted (~b). The quantity (~b) is determined by the condition that the potential U(~b) 
has a minimum. The Hamiltonian (13.2) and potential (13.3) are invariants, that is, 
they do not change under the transformations ~ ~ -q~. 

Let us now see how the vacuums are arranged in the model. We shall draw graphs 
of the potential U depending on the sign of lz 2 (Fig. 13.1). 
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1. The quantity ~2 is positive, (~b) = 0 (Fig. 13.1a). 

2. The quantity/12 is negative (Fig. 13.1b). 

When /z 2 < 0, the minima of  the potential are located at the points (r = 
4- -x/-Z-~/~.. From the point of view of physics it is not important which of the minima 
is chosen as a vacuum. But no matter what minimum is chosen, the symmetry of  the 
vacuum is spontaneously broken. The vacuum is no longer invariant relative to the 
symmetries of the Hamiltonian. 

In quantum language particle masses are defined as the spectrum of small oscil- 
lations in a neighborhood of an equilibrium point, a vacuum. In the present case the 
mass of the scalar particle generated by the field ~b (a scalar meson) is defined as the 
coefficient of q~2 in the neighborhood of a vacuum. Thus, in the case of a system with 
broken discrete symmetry, the transition to a nonzero vacuum leads only to a change 
of sign of the mass. 

A new effect appears if the equation of the field or the Hamiltonian (which is the 
same thing) has a continuous symmetry group. Let us look at a theory with two scalar 
fields A and B and the potential U(A, B) = X(A 2 + B 2 - a 2) (Fig. 13.1c), where X is 
a fixed constant. The potential U(A, B) is invariant relative to the group of rotations 
of the plane, SO(2) 

A ~ A c o s ~ o + B s i n o g ,  B ~ - A  sin co + B cos co. (13.4) 

The minima of the potential lie on the circle A 2 + B z = a 2. As in the preceding 
case, it is not important which minimum one chooses as a vacuum. But as soon as a 
vacuum is fixed, the internal symmetry is spontaneously broken. We shall choose 

(A) = a, (B) = 0. 

Expressing the potential U(A, B) on the circle of the vacuum by the variables 
A - (A) and B, it is not difficult to show that the A-meson acquires mass, while the 
B-meson remains massless (Fig. 13.1c). Thus, given spontaneous breaking of  the 
group SO(2), a massless meson appears. This result is general and does not depend 
on the particular choice of a vacuum. Only the presence of a continuous symmetry 
group is important. In the given case, this is the group of rotations of the plane (the 
circle)---SO(2). 

Massless particles which appear under spontaneous breaking of continuous sym- 
metry are called Goldstone bosons, in honor of the American physicist Jeffrey 
Goldstone. 

In its own time the Goldstone result, proved at such a high level of rigor that it 
deserved the title "theorem," aroused serious concern among physicists. The presence 
of unusual massless particles, not observed in the real world, cast doubt on all field 
theories, including the mechanism of spontaneous symmetry breaking. 

But as often happens with rigorous theorems in physics, the more serious the con- 
clusions which follow from proven assertions, the more carefully one must examine 
the initial premises. Thus it happened with the Goldstone theory. As is said, "Without 
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misfortune there would be no happiness." At nearly the same time another theory, 
the Yang-Mills theory of gauge fields, experienced similar difficulties. The Yang- 
Mills gauge field should have generated massless gauge vector particles. In one of his 
lectures, the American physicist S. Coleman characterized the resulting situation as 
follows: 

Now one smiles when remembering that at the time of their creations both 
theories--the theory of non-Abelian gauge fields and the theory of spon- 
taneous symmetry breaking--were considered intriguing in a theoretical 
sense but inconsequential in a physical sense because they both predicted 
massless particles--gauge mesons and Goldstone bosons. Only much 
later was it shown that one of these illnesses is the cure for the other. 4 

The "cure" for both illnesses proved to be the Higgs mechanism. The action of the 
Higgs mechanism shows up in the technically simplest case: that is, the interaction 
of the Goldstone field ~b with the internal symmetry group SO(2) and the gauge elec- 
tromagnetic field A~,. A detailed presentation would require pages of computations; 
therefore, we shall have to confine ourselves to a brief account of the effect. 

We write the familiar potential U(A ,  B)  of the Goldstone field ~b in polar coordi- 
nates: 

A = p c o s 0 ,  B = p s i n 0 .  

Then the rotations (13.4) become 

p ~-+ p,  0 ~-+ 0 + o9. 

In polar coordinates the invariance of the potential relative to rotations signifies 
that U is independent of  0. Vacuums, that is, minima of the potential, lie on the 
circumference p = q. Fixing a point on the circle, for example (p) = a, 0 = 0) 
we thereby choose a particular vacuum. A vacuum is not symmetric relative to the 
symmetry groups SO(2). A consequence of  such asymmetry is the occurrence of a 
massless particle corresponding to a component of  the 0 field. 

The electromagnetic field A~, also possesses a symmetry group consisting of 
transformations 

A~ v-+ A~ - O~O(x), 

where 0 (x) is an arbitrary function depending on the point x of space-time. The gauge 
group of transformations of the field A~, is also isomorphic to the group SO(2). 

When the Goldstone field ~b interacts with the gauge field, a miracle occurs: the 
massless boson 0 disappears, but in its place appears a vector particle with mass; and 
of course, the massive meson, corresponding to the scalar field, is preserved. The 
appearance of mass in an initially massless particle is called the Higgs effect. 

We shall try to understand the miraculous transformation of the massless boson. 
Initially it was a photon--a  particle with "spin" 1 and two degrees of freedom (an 

4S. Coleman, "Secret Symmetry," in: Zichichi, A. (ed.) Laws of Hadronic Matter, New York: Aca- 
demic Press, 1975. 
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electromagnetic field, as is well known, propagates in the form of transverse waves) 
and two scalar bosons p and 0. After the interaction of the photon field y with the 
field ~ the two degrees of freedom of the massless field A~ and one degree of freedom 
of a Goldstone field 0 combined to form three degrees of freedom of a new mass field 
4 .  The vector meson absorbed the Goldstone boson and acquired mass. 

The true cause of the disappearance of the Goldstone boson is associated with 
properties of gauge invariance. The equations of the theory are invariant relative to 
the transformation 0 ~ 0 + to(x), where to(x) is an arbitrary function, depending 
on point x, the space-time coordinate. In particular, one can choose a function to(x) 
equal to "minus 0," that is, by the choice of a gauge one can annihilate the 0 field. 
Real physical quantities ought not to depend on the gauge. The destruction of the 
Goldstone boson means that it actually never existed. As Coleman aptly commented, 
"This is only a sort of gauge ghost, that is, the object, like a longitudinal photon, can 
be eliminated by the choice of a gauge. ''5 

Very similar causes explain the interesting phenomena of superconductivity. In 
particular, the breaking of gauge symmetry in the macroscopic equation for super- 
conductors in the presence of a magnetic field occurs in the unusual Meissner effect: 
the expulsion of a magnetic flux from superconductors. In contemporary physics a 
deep similarity is observed between methods developed in field theory and in the 
theory of condensed matter. We shall confine ourselves to a mere statement of this 
fact and return to the "unified" theories of weak and electromagnetic interaction. Let 
us see how the ideas of gauge invariance and the Higgs mechanism help resolve the 
difficulties that arise in Fermi's theory of weak interaction. 

The most successful model of leptons was proposed in 1967 by the American 
theoretician Steven Weinberg and independently by Abdus Salam (1926-1996) from 
the International Center for Theoretical Physics in Trieste. The original version of 
the construction of Weinberg-Salam included only three leptons (the electron e - ,  the 
positron e +, and the neutrino v) and the photon y. In broad outline the interaction 
proceeds as follows. 

Suppose at the outset that all particles e - ,  e +, v are massless. Let us unite e -  and 
v in one two-dimensional representation (a doublet) ~Pl and e + in another (a singlet) 
42. The lepton field 4 = (41, 42) interacts with the gauge field of a photon: y-A~,, 
but this field cannot cause the field to acquire mass. Therefore the Yang-Mills field 
was introduced into the model. The Higgs mechanism should have led to the appear- 
ance of mass in all components of the 4 field. At this point a new difficulty arose. 
A neutrino is a massless particle. Consequently, it is necessary to find a way to keep 
one component of the field (41) massless. This introduces additional complications 
into the theory. It turned out that the Lagrangian gauge group of weak and electro- 
magnetic interactions ought to be the product of two groups: groups corresponding 
to three lepton particles and groups preserving yet another quantum size--the lepton 
hypercharge. 

The full group has the form U(2) ~- SU(2) x U(1). U(1) is already familiar as 

51bid. 
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the group of rotations of the circle, while the group SU(2) is topologically equivalent 
to a three-dimensional sphere S 3. This change in the theory allowed the ends to come 
together. Spontaneous symmetry breaking, not of the whole group U(2), but only of 
the subgroup SU(2), keeps the neutrino massless. 

Yet another interesting peculiarity of the Weinberg-Salam model is the appear- 
ance of massive Yang-Mills gauge fields--massive vector mesons. The neutral Z- 
mesons and charged W-mesons should be examples; to be specific, the interactions 
could be mediated by the massive W, Z fields. In the model several estimates of the 
mass of Z- and W- mesons were obtained, showing that they ought to be very heavy, 
on the order of 80-100 GeV. 

The possibility of generating particles of such large mass arose in the early 1980's, 
when a new generation of accelerators came on line. The brilliant ideas of the Soviet 
physicist Gersh Budker (1918-1977) (accelerators on opposed beams) and the Swiss 
Simon van der Meer (stochastic cooling of a beam of particles) made it possible to 
build accelerators with center-of-mass particle energies larger than 500 GeV. A pro- 
ton accelerator on opposed beams---the p/~-collider--with an energy of 540 GeV 
was placed in operation at CERN in 1978, and by late 1982 the first group of ex- 
perimenters (UA1), headed by Carl Rubia, announced the detection of W-bosons. 
In early May of 1983 the UA1 group detected a Z-boson. The measured masses of 
the W- and Z-bosons were in excellent agreement with the predictions of the theory 
of the Weinberg-Glashow--Salam electroweak interaction. The experiments to detect 
heavy bosons are a triumph of technical resources, experimental skill, and theoretical 
predictions, and were instantly recognized by the scientific community. The 1984 
Nobel Prize in physics went to Rubia and van der Meer. More precise measurements 
of the masses of the W- and Z-bosons were later carried out at SLAC (Stanford) 
on the e+e--collider and at CERN (LEP1) and Tevatron in the Fermilab (Batavia; 
Illinois). The results of experiments confirmed the theory of electroweak interaction 
within 0.1%. The launching of a new series of accelerators in CERN in 1996 (LEP2) 
is making it possible to obtain even more precise information on the masses of heavy 
bosons. In the meantime, only one prediction of the theory remains unconfirmed by 
experiment--the existence of heavy scalar bosons--Higgs particles. A lower bound 
of ~ 65 GeV has been given for their mass. Experiments to detect them will soon be 
carried out at CERN on the giant LHC (large hadron collider) supercollider, which it 
is anticipated will be built early in the next century (2005). 

The presence of heavy mesons is a necessary consequence of the correctness of 
the theory. However, the theory also predicted other processes connected with the 
exchange of neutral Z-mesons. Such reactions, called processes with neutral cur- 
rents, were discovered in 1972 by researchers at several scientific centers, including 
CERN. The discovery of neutral currents appeared in a convincing experiment which 
confirmed the basic propositions of the gauge theory of weak and electromagnetic 
interactions. 

Although for a theoretician the internal beauty and harmony of a theory probably 
plays a decisive role, the Nobel Committee uses other criteria. The awarding of the 
Nobel Prize in 1979 to S. Weinberg, Abdus Salam, and S. Glashow shows that this 
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Figure 13.2: Trivial and nontrivial fiber bundles. (a) A cylinder. (b) A M6bius strip. 
(c) See Fig. 9.8a. The tangent fiber bundle to the sphere. The tangent fiber bundle of 
the sphere is nontrivial. This assertion, together with the more general one asserting 
the nontriviality of  the fiber bundle on any two-dimensional surface which is not a 
torus, follows from Poincarr 's  hedgehog theorem. 

theory ought to be included in the "golden background of physics?' 
Having now acquired some idea of problems facing physicists in elementary par- 

ticle theory, the reader may justly ask: While all of this is very interesting, what is the 
relevance of topology here? To such a question one can give a one-sentence reply: 
Topology makes it possible to explain the unusually complex structure of  solutions 
of equations of gauge fields. A more elaborate answer requires a small mathematical 
digression. 

From a topological point of view, gauge fields are a special case of  fiber bundles. 
What are fiber bundles? Consider the now-familiar M6bius strip and the cylinder. 
Remember that these surfaces are not homeomorphic. However, if one chooses a 
small neighborhood of an arbitrary point on the cylinder and the M6bius strip, it is 
easy to see that they have the same local structure. Such a neighborhood can be 
represented by combining pairs of points x, y, where x e S 1, y ~ I .  Here S 1 is the 
circle, while I is a segment (see Fig. 13.2). 

If the point x is made to traverse the whole circle S 1 and the segment I is a 
function of the point x, then in the case of a cylinder it turns out that segment I ,  
when it returns to the initial point, preserves the orientation. But in the case of  a 
M6bius strip it changes it to the opposite (rotates it by 180~ Thus, although the 
cylinder and M6bius strip have the same local structure, globally they are different. 
In this case topologists say that the cylinder is trivial, while the M6bius strip is a 
nontrivial fibration. Another example of a fibration which we have seen is the set of 
tangent vectors to a two-dimensional oriented surface. In general a fiber bundle can be 
represented as follows. Let X be an arbitrary space (the base) at each point of  which a 
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Figure 13.3: The "Fair" of physical ideas. Caricature by the physicist Alvara De 
Rujula. Who will succeed in rescuing the quark damsel confined in her tower? (De 
Rujula's view of the current scene in particle theory) (CERN Courier No. 7, Vol. 19, 
Oct. 1979), reprinted with permission. Now, twenty years later, there is not much that 
could be changed in De Rujula's picture. The quark damsel is still in the dark, despite 
new discoveries and attempts to reactivate the old devices. All the old hopes, such as 
the modest CP n tadpole, have been dashed, their place taken by new favorites such 
as the Witten-Seiberg invariants. But the author lacks the skill and imagination to 
describe them. 

copy of the space Y is attached (the fiber). Given a point x moving along S, the fibers 
Yx are transformed into each other by the action of the group G of transformations of 
the fiber Y. The fiber bundle E is the union of all the fibers Yx. 

From the point of view of topology gauge fields are fiber bundles in which the base 
is four-dimensional space-time, while gauge groups are groups of transformations 
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of the fiber. It follows from the property of local gauge invariance that these are 
nontrivial fibrations. 

Far-reaching analogies between topological and physical properties of gauge fields 
are being observed. Gauge fields are not simply arbitrary fiber bundles; they are en- 
dowed with an additional geometrical structure which permits comparison of different 
fibers. Such a structure is called a connection. 

In terms of a connection one can give a geometric interpretation to the physical 
quantities inherent in gauge fields. In essence gauge fields and fiber bundles have the 
same relationship to each other that gravitational fields have to Riemannian spaces. 

At present the Yang-Mills fields seem a reliable foundation for constructing a 
theory of elementary particles. The efforts of theoreticians are directed at solving 
the equations of gauge fields. The task has turned out to be extraordinarily compli- 
cated. Ingenious physicists are assaulting the Yang-Mills equations from all sides 
(Fig. 13.3). Various approximate schemes--refined variants of perturbation theory-- 
have been proposed, and simpler models, possessing characteristic features of the 
Yang-Mills equations, are being investigated, but there is not yet a final solution. 

Topological methods have proved to be a major help in solving the problems that 
arise. Topology makes it possible to explain the general structure of the set of so- 
lutions without even knowing their analytic expression. The most interesting result 
of topological investigations is the appearance of new conserved quantum quantities, 
having a purely topological, rather than a dynamic, origin. Such quantities are called 
topological charges. Solutions that carry topological charges--topological particles-- 
have the same direct relationship to reality. The origin of such particles leads to im- 
portant physical consequences. One of the most interesting examples of such a type 
of particle is the 't Hooft-Polyakov monopole in the Georgi-Glashow model of weak 
interactions, which will be the subject of a separate discussion. 



Chapter 14 

Topological Particles 

I N 1974 the Dutch physicist Gerardt 't Hooft and the Russian physicist Alexan- 
der M. Polyakov (now at Princeton University) found solutions to the Yang-Mills 

equation for the group SO(3) and additional scalar fields (the fields of Goldstone- 
Higgs). 1 These solutions had one topological charge which was interpreted as a "mag- 
netic charge." G. 't Hooft suggested calling them magnetic monopoles. The name was 
to symbolize the deep commonality of the newly discovered "particle" with another 
mysterious object--the Dirac magnetic monopole. 

Let us go back fifty years and to Dirac's paper, "Quantum singularities in an elec- 
tromagnetic field," published in 1931. In this paper Dirac gave a completely new 
interpretation of two questions that are fundamental to physics. Why are there parti- 
cles carrying an electric charge in nature but none with a magnetic charge? In suitable 
units the charges of all particles turn out to be integer multiples of the charge of an 
electron e. Dirac suggested that magnetic monopoles exist and found that this hy- 
pothesis leads to a natural explanation of the quantization of electric charge. By this 
elegant analysis he showed that the presence of a magnetic monopole does not lead 
to any theoretical contradictions with contemporary physical concepts, in particular, 
with the Maxwell equations. In his characteristic style, he concluded: "Under these 
circumstances one would be surprised if Nature had made no use of i t ." 

Dirac monopoles must possess a number of surprising properties. Just as for 
electrically charged particles, they must also fulfill the condition of conservation of 
magnetic charge. This means that a monopole, once created, cannot by itself disap- 
pear without having collided with another monopole with a magnetic charge of the 
opposite sign. The elementary magnetic charge of a monopole must be 137/2 times 
the charge of an electron. Consequently, the force of interaction of two monopoles 
must exceed the force of the interaction of two electrons at the same distance by ap- 
proximately a factor of 4692. 

"This very large force may perhaps account why poles of opposite sign have never 

1 Before the discovery of neutral currents, the Georgi-Glashow model of weak interactions competed 
with the Weinberg-Salam model. 
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yet been separated," wrote Dirac in 1931. 2 
Sixty years of effort to detect Dirac monopoles have not changed this state of af- 

fairs. So far, there are no decisive arguments proving the reality of magnetic monopoles, 
but one cannot exclude their future appearance. Nonetheless, there is serious doubt 
that they exist. The introduction of the concept of gauge invariance into the the- 
ory of elementary particles has provided a completely new look at the problem of 
monopoles. A decisive step in this direction was taken in the work of 't Hooft and 
Polyakov. They succeeded in constructing a steady-state solution (that is, one inde- 
pendent of time) with finite energy in the Georgi-Glashow model. They interpreted 
such a solution as a particle; and having computed its mass, they showed that it agrees 
with estimates of the mass of a charged W-boson. Another interesting property of this 
solution is the appearance of a "magnetic" charge. 

Spontaneous symmetry breaking, the Higgs mechanism, nontrivial fibrations--all 
themes of our previous chapters--play their part in the concept known as a monopole. 

Let us consider in somewhat greater detail the 't Hoofl-Polyakov construction. 
We shall not write out the Lagrangian of the Georgi-Glashow model and the corre- 
sponding equations of motion; instead we shall formulate only those properties of the 
Yang-Mills and Higgs fields used in finding solutions. Their physical interpretation 
was discussed in the chapter on gauge fields. Two kinds of fields are involved: the 
Yang-Mills vector fields W~ and the Higgs scalar field 4'i, which assumes values in 
isotopic space--the three dimensional space R 3. The gauge group SO(3) is the group 
of rotations of R 3. The spatial index ~ assumes the four values 0, 1, 2, 3, and the iso- 
topic index i assumes the three values 1, 2, 3. Because we shall be considering only 
stationary solutions, we shall assume that the time component (t) is 0. The Higgs 
potential U(4') is invariant relative to the group SO(3) and is equal to 

/z 2 X 
u(4') = ~ ( 4 ' .  4,) + ~(4' .  4')2, 

where 
(4 ' .  4') = (4'1)2 _.]_ (4'/)2)2 + (4'3)2. (14.1) 

The set of minima of the potential U(4') defines the vacuum space f2 and satisfies 
the relationship 

OU 32U 
- - = 0 ;  - - > 0 .  
0 4 '  34' 2 - 

In this case the space f2 is the two-dimensional sphere S 2. 
One can fix a vacuum by choosing a certain point on the two-dimensional sphere. 

The simplest vacuum solution, which is constant in space, will be called the Higgs 
vacuum. It has the following form: 

/2 
4'i(x) = -~e3, wi~(x) = 0. (14.2) 

Here e3 is a unit vector in the space ]K 3, directed along the z axis. 

2EA.M. Dirac, Proc. Roy. Soc., A. 133 (1931), p. 60. 
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The other class of vacuum solutions was found by 't Hooft and Polyakov. They 
showed that there exist solutions to the Yang-Mills equations which do not depend 
on time and have the following form as Ixl ~ oc: 

X i X i 
~ ) i ( x )  : - ~ ] ,  w i ~ ( x )  ~- el~ij ix12. (14.3) 

H e r e  et~ij is an antisymmetric tensor. For/z = 1, i = 2, j = 3 it is given by e~ij  : 1 

for even permutations of the subscripts and 8~ij  : - - 1 ,  for odd permutations, because 
the time component (#  = 0) equals 0. The happy term hedgehog was invented for 
such a solution. The spines of the hedgehog form a radial vector field. 

The nontriviality of  this solution consists of the fact that for given finite values (x) 
no closed-form solution is known. The existence of solutions with such asymptotic 
properties and the even more general properties 

1 t~i (X) ~p(n), i W~(x) ~ -W~(n),i  [x [ -+  cx), (n .  n) = 1, 
r 

appears as a purely topological fact. 
Very little analysis is required to explain why a solution of the form (14.3) is 

interpreted as a monopole. Let us go back a little and look carefully at the Higgs 
vacuum (14.2). The Higgs field t~ i is directed along the z-axis and therefore remains 
invariant under rotations around the z-axis. 

The Higgs mechanism remains a massless particle, connected with the group of 
rotations about the z-axis. The corresponding massless particle is identical to the 
photon y. In precise analogy with the theory of electromagnetism, one can connect 
the electromagnetic field Fu~ and write the Maxwell equations for it in terms of the 
fields ~b i and W~. The field F~,~ occurs as a physically observable quantity and must 
be independent of the choice of the gauge. Therefore it is defined for any vacuum 
solution, in particular, for a hedgehog. Direct computation of the field Fu~ led to 
startling results: 

- 1  
Fu v = i er---~Euvir . 

Up to sign this Fu~ corresponds to the radial magnetic field B of a point source with 
magnetic charge g 

4zr r a 
- - - - - - ,  B - - - -  (14.4) 

g e -- er a. 

The quantity e is associated with the electrical charge ~ by the relationship ~ = eh /2 .  

The 't Hooft-Polyakov solution thus acquired all necessary properties to merit being 
called a magnetic monopole. 

Let us now discuss monopole solutions from a topological point of view. It is 
intuitively clear that the vacuum solution (14.2) and the hedgehog (14.3) are topolog- 
ically different, but how can we prove this? The techniques of homotopy theory again 
come to our aid. The solution determined using the functions t~ i amounts  to nothing 
more than a mapping of  the coordinate space ]~3 with certain boundary conditions 
into the vacuum isotopic space f2. The asymptotic conditions give a mapping of the 
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unit sphere S 2 into the vacuum space f2. In order to avoid confusion, we shall write 
the "vacuum" sphere with a tilde 72. 

As noted above, the set of topologically inequivalent mappings of the sphere S 2 
into the sphere 72 is called the second homotopy group rr2(S 2) = Z, where Z is the 
group of integers and where the group operation is addition. 

It is now clear how to prove the inequivalence of the two vacuum solutions. It suf- 
fices to show that they belong to different homotopy classes. But this is alread)~ quite 
obvious. The vacuum solution (14.2) maps the sphere S 2 to the point x0 e $2; the 
hedgehog maps the sphere S 2 onto the sphere 72 identically. From this it follows that 
one cannot transform the solution (14.3) into (14.2) by a continuous transformation. 

One of the most interesting consequences of the foregoing discussion is a sim- 
ple explanation of the appearance of a "Dirac string." Recall that the original Dirac 
construction required a line singularity emanating from a monopole and on which 
the vector potential A~, undergoes a break. The requirement that observable physical 
quantities (in particular, a magnetic field) be finite led to special quantization rules 
when traversing the string. In this connection a question arose as to the observability 
of the string. In the 't Hooft-Polyakov monopole this problem does not exist. The 
origin of the line of singularity has a very simple explanation. The transition from a 
hedgehog vacuum to a Higgs vacuum is possible only through a broken gauge trans- 
formation, since they belong to different homotopy classes. The lines of the break of 
the vector potential will be "Dirac strings." It is also obvious that a Dirac string can 
have a completely arbitrary form and direction in space. 

From topological considerations it also follows that there is an infinite set of vacu- 
ums, parametrized by the integer k. One could call them "twisted hedgehogs," where 
the usual hedgehog corresponds to the value k = 1. The magnetic flux defined by a 
k-twisted hedgehog, would be k times larger than for a normal hedgehog. 

The appearance of monopoles in the Yang-Mills equations has made possible a 
fresh look at the Dirac monopole. The 't Hooft-Polyakov monopole is a classical 
regular solution, appearing in a whole class of models of weak and electromagnetic 
interactions. Such a solution is absent in the original scheme of Weinberg-Salam but 
appears in several of its modifications. 

The purely topological origin of monopole solutions became clear immediately 
after the work of 't Hooft and Polyakov. A criterion was obtained for the existence of 
solutions of monopole type in the Yang-Mills equations with an arbitrary symmetry 
group in terms of homotopy groups. Do magnetic monopoles then really exist? Con- 
cluding our brief discussion of this most interesting theme, I would like to talk about 
the somewhat unexpected possible "observation" of a monopole. It has already been 
mentioned that monopoles must be very massive particles in all gauge field theories. 
The energies obtained in contemporary accelerators are so far inadequate for creating 
particles with such masses. But there are situations in which monopoles have been 
observed already, or at least may have been observed. The mysterious boojums that 
occur on the surfaces of cholesteric liquid crystals or 3He-A might be indicators of 
monopoles. The role of monopoles is filled by a vortex located in the center of the 
volume, relaxing onto a special point of the surface, the boojum. 
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Figure 14.1: Monopole in a cholesteric drop. Courtesy O. Lavrentovich. 

Theoretically, there is nothing to prevent such a possibility. In any case, the topo- 
logical nature of the appearance of monopoles in gauge theory and of a field of vor- 
tices in ordered media is one and the same. This is beautifully shown in the experiment 
conducted by Oleg Lavrentovich (Kent State University), pictures of which are shown 
in Figs. 14.1 and 14.2. 

In addition to the topological methods already familiar to us from solid-state 
physics--homotopy and homology theories--in field theory one has to use the full 
power of modern mathematics. By itself topology is completely inadequate for solv- 
ing the Yang-Mills equations. 

To see the truth of these words let us turn to yet another class of nontrivial topo- 
logical solutions of the Yang-Mills equations, one that was discovered soon after the 
gauge monopoles and has played an extremely important part in the whole subsequent 
history of the interaction of topology and physics. 

14.1 Instantons, or Pseudo-Particles 

A remarkable property of the current stage of development of physics is the intimate 
intertwining of the ideas and methods of field theory and condensed matter theory. 
Many model systems in field theory correspond to real objects in solid state physics, 
and a number of concepts that originally arose in statistical physics are now finding 
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Figure 14.2: Pairs of boojums in nematic drops. Courtesy O. Lavrentovich. 

important applications in field theory. This unity of modem physical theory is quite 
remarkable. It is no wonder that a number of theoreticians are working successfully 
in both areas of physics. 

Two problems, one in the elementary particle physics, the other in statistical 
physics, are of fundamental significance for the development of the theory. In ele- 
mentary particle theory the problem is that of "confinement" of quarks; in statistical 
physics it is the theory of phase transitions. 

In slightly more detail, it is a question in the first instance of constructing a coher- 
ent theory based on the Yang-Mills equations to explain the confinement of quarks; in 
the second case it is a matter of describing phase transitions in the vicinity of a critical 
point (a ~.-point). These fundamental problems arise in connection with the study of 
the fluctuations of a vacuum (field theory) and the ground state (critical phenomena). 

The Lagrangians that define the corresponding theories are essentially nonlinear, 
so that finding solutions of the equations they generate is a difficult mathematical 
problem. How do physicists, who think pragmatically, proceed in such cases? They 
attempt to find a simpler solvable model that retains the properties of realistic systems. 

An important, yet at the same time technically rather simple, model is the well- 
known two-dimensional Heisenberg ferromagnet (see Chapter 11). It was the contin- 
uous analogue of this model that A. Polyakov (partly in collaboration with his col- 
league from the Landau Institute A. Belavin) used as the starting point for a series of 
papers on critical phenomena in two-dimensional systems, which led to the discovery 
of instantons. 
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Let us denote by n a (x) the spin vector that assumes values in the sphere S 2, that 
is, (na) 2 = 1, where the superscript a assumes the values a = 1, 2, 3 . . . . .  The action 
of S has the form 

S = j(O~na)(O~n a) d2x (14.5) 

where d2x is the element of  area on the plane R 2 and # = 1, 2. We shall be interested 
in solutions of  the equation 

gS = 0 (14.6) 

with finite action. We shall explain in brief outline the importance of such solutions 
for problems of phase transitions in the model (14.5). For the reader interested in the 
physics of this phenomenon I recommend the books [Po] and [PP], where the current 
state of  the subject is presented fully and accessibly. 

The principal object in terms of which the type of phase transition is determined 
is the spin correlation function: (n(x)n(xl)). Here (.-) denotes the average over all 
possible configurations with the weight function e x p ( - S / k T ) ,  where k is the Boltz- 
mann constant and T the temperature. All the properties of the system are determined 
by analyzing the statistical sum (partition function): 

Z = y ~  e -S/kT. 

over all configurations 

As T ~ 0 the local action minima S, that is, the solutions of  Eq. (14.6), begin to play 
an essential role in the behavior of  the correlation functions. 

Besides the trivial solution n0(x) ----- const, Eq. (14.6) may have other local mo- 
menta. They play a fundamental role in the possible change in the nature of  the phase 
transition. The corresponding arguments involve an analysis of  the symmetry of Eq. 
(14.6). The solutions of  Eq. (14.6) with finite action have conformal symmetry, in 
particular gauge invariance. These solutions were called pseudo-particles or instan- 
tons. 

It follows from the gauge invariance of the solutions that the mean distance be- 
tween instantons at small T is of  the same order as their dimensions, that is, instan- 
tons can be thought of  as drops in a homogeneous medium whose distances are of 
the same order as the dimensions of  the pseudo-particles themselves. Such random 
inhomogeneities violate spin correlation at a distance R > r and thereby change the 
nature of the phase transition. In the present case this indicates the absence of a phase 
transition. 

All this reasoning is supported on a firm topological foundation, to whose analysis 
we now turn. How can we find all solutions of  Eq. (14.6) with finite action? Consider 
the class of  solutions that have the following boundary behavior: 

n(x) ---> no as Ixl ~ oo. (14.7) 

Then the spin variable n(x) is defined on the extended plane R 2 U oo = S 2. Since 
the metric on R e is conformally equivalent to the metric on S 2, all solutions of Eq. 
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(14.6) satisfying the condition (14.7) have a unique extension to S 2. Thus we have a 
mapping 

2 2 (14.8) n : Sspac e ~ Sspin" 

Since physical states that pass into one another by a continuous deformation are in- 
distinguishable, we are interested in the topologically nontrivial mappings (14.8). 
We have already encountered a topological object that classifies the nontrivial map- 
pings (14.7) when we analyzed the point defects in a nematic and when we described 
monopoles. This object is the homotopy group zr2(S 2) = Z. An integer k (k ~ Z) 
characterizing a mapping can be represented in integral form: 

k = ~ 2  euvn.  (0•n x 0~n)d2x. (14.9) 

R2 

Here eu~ is a well-known antisymmetric tensor: e12 = 1, e21 = - 1 ,  �9 is the inner 
product, and x is the cross product. 

The possibility of such a representation follows from classical theorems of topol- 
ogy. (For the exhausted reader we shall say that this is a well-known theorem of 
Hurewicz.) So as not to depart from the general plan of this book I am forced to con- 
fine myself  to listing the facts needed for what follows. The interested reader can find 
the corresponding proofs and details in a number of surveys and books, for example 
[Pol] and [Mo]. The representation of the quantity k in the form (14.9), which is 
called a topological charge, makes it possible to prove the following key inequality: 

S >_ 4zrk, 

which is equivalent to the condition 

Oun 4-eu~n x O~n > O. 

The equality S = 4zrk means 

Oun 4- eu~n x O~n = O. 

(14.10) 

(14.11) 

(14.12) 

This equation is called the duality equation (with the positive sign) or the antiduality 
equation (with the negative sign). Solutions of Eq. (14.12) are also called instantons 
(with the positive sign) or anti-instantons (with the negative sign). In this model, as 
we shall explain in a moment, both definitions of  instantons give the same class of 
solutions, though in more complicated situations not every solution of the equation 
for an extremal (Eq. (14.6)) with finite action is a superposition of solutions of the 
duality and antiduality equations. For that reason instantons and anti-instantons are 
defined in general as solutions of Eq. (14.12). 

Equation (14.12) admits explicit solutions if we pass to complex coordinates after 
a preliminary mapping of the Riemann sphere S?pac e (the z-plane) using stereographic 

projection onto the w-plane (Xspin).2 . 

n I + in 2 
w = wl + iw2 -- 1 -- n 3 cot(0/2) exp(i~0). 
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In (z, w)-variables the expression for the action (14.9) is 

f d:x off S 2 
(1 + [wlZ) 2 k Oz "~z 

~2 

Ow Off) 
+Tz 

and the expression for the topological charge (14.10) is 

1 f d2x (011) Off Ow Off9) 
Q = ~ -  (14-1w12) 2 \ 0 z  0~., 0~ ~zz " 

Hence it follows that the duality (antiduality) equations reduce to the Cauchy- 
aw off 

Riemann equations 0---~" = 0 (duality) or Oz = 0 (antiduality). 

Taking account of the boundary conditions (14.7), we obtain the general solution 
of Eq. (14.12) in the form of a rational function on the sphere S2 

k 
v I  z--ai  

w ( z )  = - . 

i=1 Z bi 

Here we have chosen the condition n(oc) = no = 1. It is obvious that such a choice 
of boundary condition causes no loss of generality in the solution of Eq. (14.12), since 
because of the invariance of the action of S with respect to the group of rotations of 
the sphere (the group SO(3)), any boundary value can be translated to 1. 

The topological charge Q equals k for an instanton and - k  for an anti-instanton. 
The solution is characterized by (4k - 3) real parameters: the 2k complex numbers 
ai, bi determine 4k parameters, but one must take account of the fact that the group 
SO(3), which has dimension 3, acts globally on the sphere. For that reason the total 
number of parameters is 4k - 3. 

The paper of Belavin and Polyakov (published in 1975) drew a large response, 
since it contained a clearly articulated investigation of the role of the classical so- 
lutions in the study of fluctuations in the vicinity of a critical point. From a purely 
mathematical point of view this paper contained no new results. Indeed, 20 years be- 
fore this paper appeared the American mathematician F.B. Fuller, and subsequently J. 
Eells, J.H. Sampson, and a number of others had studied variational problems for ac- 
tion functionals significantly more general than the example investigated by Belavin 
and Polyakov. The corresponding class of mappings is called harmonic, since in the 
case of a mapping of a Riemannian manifold M" (where n = dim M) into N 1 har- 
monic mappings are simply harmonic functions. 

Although there already existed a voluminous literature on harmonic mappings at 
the time when the paper of Belavin and Polyakov appeared, physicists were com- 
pletely unaware of it. The period of close interaction between mathematicians and 
physicists had only just begun, and the situation began to change overnight and led 
to a bold effort to study the classical solutions of a significantly more complicated 
system--the Yang-Mills equations. Polyakov and Belavin were able to obtain the 
valuable advice of a famous topologist, S. Novikov. A result of their contact with 
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another Moscow topologist, A. Schwarz was a remarkable paper by four authors. 
(The fourth letter in this abbreviation stands for Yu. Tyupkin, a student of Schwarz.) 
In this paper an instanton solution of the Yang-Mills equation was found (having 
charge 1). 

The work on instantons inspired a steady stream of research, which can be sum- 
marized as follows: 

1. Physical applications. Soon after the discovery of instantons V. Gribov and 
G. 't Hooft proposed an intuitive and physically important interpretation of in- 
stantons as transitions between different vacua (Lagrange-Yang-Mills minima) 
in Euclidean space. In analogy with quantum mechanics instantons--the classi- 
cal solutions of the Yang-Mills equation--tunnel between different vacua. The 
contribution to the corresponding vacuum transition amplitudes turns out to be 
exponentially small and cannot be obtained from perturbation theory. Taking 
account of the instanton contribution has led to profound results in quantum 
chromodynamics. As frequently happens in the history of science, the main 
problem for which instantons had been invented (confinement of quarks) still 
had not been solved. Taking account of instantons was not sufficient for the 
computation of large-scale fluctuations of a vacuum. Still, the role of instantons 
in particle physics was significantly greater than just their use in solving sev- 
eral important particular problems. Along with monopoles, instantons brought 
into physics a kind of mathematics that was unusual for it--topology, and later 
algebraic geometry as well. The connection with these branches of mathemat- 
ics, which was not traditional for physics, has done much to shape the present 
situation in theoretical physics. The opposite influence has been of no less im- 
portance. 

2. Mathematical applications. Originally the mathematical papers were concen- 
trated around the analysis of the topological structure of instanton solutions. 
In particular the most complete results on the classification of k-instanton so- 
lutions were obtained by the methods of algebraic geometry in a paper of 
M. Atiyah, V. Drinfel'd, N. Hitchin, and Yu. Manin (the ADHM-solutions). 
But the most remarkable applications of instanton theory were to be the dis- 
covery by S. Donaldson of simply connected 4-dimensional manifolds with 
different smooth structures. Unfortunately any reasonably complete discussion 
of these results is beyond the scope of a popular exposition. The interested 
and sufficiently qualified reader will find a complete exposition of Donaldson's 
theory in the books [DK] and [FU]. I shall try to describe the key elements 
of Donaldson's construction and point out several corollaries that are of both 
mathematical and general physical interest. 

. Donaldson's theory. The topological classification of simply connected 4- 
dimensional manifolds M 4 is based on the study of the algebraic properties 
of the so-called intersection quadratic form Q defined on the 2-dimensional 
homology group H2(M 4, Z). A fundamental classification theorem due to 
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M. Freedman asserts that any unimodular quadratic form over the ring of in- 
tegers Z can be the intersection form Q on H2(M 4, Z). For the time being we 
shall regard the manifold M 4 as being topological, that is, the topology of M 4 

is given by its continuous functions. As often happens in mathematics, behind 
the simple statement of the theorem lurks an exceptionally difficult proof. The 
idea of classifying manifolds using the intersection form originated in 1952 in 
papers by the famous topologist V. Rokhlin. He obtained a result that was fully 
appreciated only 30 years later. He showed that if a smooth compact simply 
connected manifold M 4 has an even intersection form Q (that is, it assumes 
even values), then its signature a must be divisible by 16, while for a topolog- 
ical manifold it suffices that it be divisible by 8. As Donaldson later showed, a 
manifold M 4 with an even form Q cannot have a smooth structure. Freedman's 
paper was published in 1982, and only a year later Donaldson showed that for 
a smooth simply connected M 4 with a positive-definite form Q the form Q can 
be diagonalized over Z (the ring of integers), that is, Q is odd. 

2 (14.13) Q = x ~ + . . . + x  n. 

Comparison with Freedman's results leads to a fundamental corollary--the ex- 
istence of 4-dimensional manifolds that are homeomorphic but not diffeomor- 
phic. It is striking that for the proof of this theorem of algebraic topology 
Donaldson had to invoke the theory of instantons. The idea of the proof is as 
follows. 

Consider the manifold C P  2 that is the sum of n copies of the 2-dimensional 
complex projective plane C P  2. For this manifold, which satisfies the hypothe- 
sis of Donaldson's theorem, one can compute the form Q. The next step is to 
construct a 5-dimensional manifold V 5 with two boundary manifolds, one of 
which coincides with a manifold M 4 and the other with CP~ 2. The existence 
of such a triple (V 5, M 4, CPf )  follows from purely topological reasons. In 
topology such a construction is called a cobordism, and the manifolds M 4 and 
CP~ which can be joined by the "film" V 5 are said to be cobordant. Since the 
signature ~r of the quadratic form Q is invariant under cobordisms, it follows 
that the form can be reduced to (14.13) for an arbitrary M 4. The most diffi- 
cult part of Donaldson's proof is the construction of the required cobordism. 
That is the stage at which it is necessary to make full use of the fact that on 
4-dimensional manifolds there exist smooth bundles with the connection gen- 
erated by the Yang-Mills fields, more precisely, the connection generated by 
the duality equations, that is, instantons. 

Donaldson's result stimulated a series of papers in which the rich and com- 
pletely unexpected structure of 4-dimensional manifolds was discovered. The 
most surprising result is probably the discovery of different smooth structures 
on noncompact manifolds, in particular on a space homeomorphic to ]K 4. The 
American mathematicians R. Gompf and C. Taubes constructed respectively a 
countable and a continuous family (these families are not the same) of different 
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smooth structures on ]~4.3 Since Euclidean space and Minkowski space-time 
are the basic objects in all fundamental physical theories and the concept of 
a metric is closely connected with smoothness, this discovery may have deep 
significance for the modern theory. It suffices to mention quantum gravity and 
the theory of membranes and strings, where it is necessary to integrate over all 
metrics in order to compute the generating functionals. While physicists are 
overcoming difficulties of a more prosaic kind, 4-dimensional smooth topology 
has become an object of intensive study by mathematicians. Donaldson's the- 
ory, in particular, has been extended to nonsimply connected manifolds. One 
interesting result of  this research was the clarification of a surprising property of 
smooth 4-dimensional manifolds: a number of geometric invariants of smooth 
manifolds are the same as those of 4-dimensional algebraic varieties, which are 
manifolds with a significantly more rigid structure than topological manifolds. 
This amazing phenomenon is characteristic of 4-dimensional topology. 

Instantons were originally found by physicists as Yang-Mills connections in a 
bundle over the sphere S 4. Ironically, despite the whole development of the theory, the 
most natural question remains unanswered: Do there exist different smooth structures 
on ~;4? (If so, the group H2(S 4, Z) is zero and the existing theory is inapplicable.) 
The connection of Yang-Mills fields with 4-dimensional topology by no means ex- 
hausts the application of physical ideas in modern mathematics. Very interesting and 
promising is the connection of field theory with knot theory and three-dimensional 
topology. But we shall discuss that below. 

Returning, after our brief journey into the world of  higher theory, to the problems 
faced by physicists directly engaged in studying the structure of elementary particles, 
one must frankly confess that the basic method of obtaining numerical results that can 
be compared with experiment is still the method of perturbation theory. 

Until recently the only means for obtaining numerical quantities in field theory 
was the perturbation method. This method, which has given excellent results in quan- 
tum electrodynamics, is not so effective in theories of strong interactions; but it is 
used for lack of anything better. One should not think that perturbation theory in the 
theory of gauge fields is a simple thing. The efforts of many outstanding theoreticians 
have resulted in the construction of an invariant theory of perturbations for the Yang- 
Mills fields in the framework of which the Yang-Mills equations have successfully 
been quantized. 

In recent years, however, yet another area of investigation has arisen, on which 
specialists in field theory are placing high hopes: solitons. 

4 ~ 4 3Spaces homeomorphic, but not diffeomorphic, to R are called "fake ]R s and denoted R). They 

have amazing topological properties. For example, in contrast to the standard IR 4, the spaces R) contain 

a compact set K that cannot be enclosed in any smoothly imbedded sphere •3, although this can be done 
with a continuously imbedded sphere. It follows from this that the spheres in R 4 have a complicated 
(sawtooth) fractal structure near infinity. 



Chapter 15 

Soliton Particles 

T HE Yang-Mills equations are nonlinear, and therefore there is little hope of 
finding closed-form solutions. Such a statement seems quite plausible. Every 

student who has taken a course in differential equations will remember that the only 
differential equations for which a general solution is given in closed form are linear 
differential equations with constant coefficients. As often occurs in life, however, 
exceptions to the rule are sometimes are more interesting than the rules themselves. 
The wave equations for scattering have turned out to be an exception. 

Let us digress a bit from quantum physics and talk about a phenomenon originally 
detected in hydrodynamics--the formation of a solitary wave. The concept of a soli- 
tary wave was introduced about 150 years ago by the British shipbuilding engineer 
John Scott Russell. In a paper presented to the British Society for the Advancement 
of Science, he gave an enthusiastic description of the phenomenon: 

I was watching the motion of a barge which a pair of horses was pulling 
at great speed along a narrow canal when suddenly the barge stopped 
sharply. But the mass of water it had set into motion in the canal was 
by no means stopped. Violently seething, it began to gather around the 
prow of the boat, and then suddenly, abandoning the boat, it rolled off 
ahead with tremendous speed, having taken the form of an isolated large 
mound--a roundish, smooth and sharply outlined mass of water which 
continued its path along the canal without any noticeable change of form 
or slackening of speed. I rode after it on horseback and when I caught it, 
it continued to roll forward at a speed of 8 to 10 miles an hour, preserving 
its initial form in the shape of a figure about 30 feet long and 1-1/2 feet 
high. The height of the water gradually decreased, and after pursuing it 
for one to two miles, I lost it in the windings of the canal. Thus, in the 
month of August 1834 occurred my meeting with such a peculiar and 
excellent phenomenon. 

Russell's observation was by no means immediately accepted by the scientific 
community. Such authorities as G.B. Airy (1801-1892) and G.G. Stokes (1819- 
1903) doubted the possibility of the formation of a wave having constant shape and 
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propagating above the level of the water. However, by the mid-1870's Joseph Boussi- 
nesq (1842-1929), in 1871, and Lord Rayleigh (John William Strutt, 1842-1919), in 
1876, had confirmed Russell's results theoretically. In particular Boussinesq derived 
an equation that describes the propagation of waves in shallow water (that is, under 
the assumption that the amplitude of the wave is small in comparison with the depth 
of the water in the channel) taking account of dispersion and nonlinear effects. His 
equation describes the motion of waves moving in two directions (right and left) and 
has the form 

1 
utt  - Uxx - ( u 2 / 2 ) x x  + - U x x x x  = 0. (15.1) 

U 

Here and below we are using the standard notation: 

Ou O2u Ou 02u 
U t  ~ - - ~  Utt = UX = -~X' Uxx - -  etc. 

Ot Ot 2 ' Ox 2 '  

The next most important event was the 1895 paper of D.J. Korteweg (1848-1941) 
and G. de Vries. The Korteweg--de Vries (KdV) equation also describes the propaga- 
tion of waves in shallow water, but moving in only one direction. It is: 

ut + 6UUx + Uxxx = 0. (15.2) 

Although the KdV equation can be obtained by reduction from the Boussinesq 
equation (by retaining only the waves that move in one direction), there are many 
reasons why it has independent and more fundamental significance. 

The solution of the KdV equation, which corresponds to a traveling wave, is not 
difficult to find by assuming that u ( x ,  t )  has the form u ( x  - a t ) .  If one changes to a 
coordinate system ~ moving at speed a, that is, ~ = x - a t ,  the wave will appear to 
be stationary. In these coordinates, the KdV equation for a solitary wave will be an 
ordinary differential equation that is easy to solve. 

One possible solution of solitary wave type when the asymptotic condition t~(~) 
0 as ~ ~ 4-oo is chosen has the closed form 

tT(~) = 3asech2(~V'-~). 

Solitary waves, which are localized lumps that preserve energy and move in space 
without changing shape, have received the name solitons. For a long time, solitary 
waves were treated as an unimportant piece of exotica encountered in two-dimensional 
problems of nonlinear waves. It was supposed that when two such waves collided 
they disintegrated completely; therefore there was no basis for considering soliton 
solutions to be sufficiently general. 

The limited interest in the KdV equation is particularly noticeable when we trace 
the fate of the authors of this discovery. Diederik Johannes Korteweg was a promi- 
nent Dutch scholar, a professor at the University of Amsterdam, and a member of the 
Netherlands Academy of Science. Although his name is now known mostly for the 
KdV equation, his contemporaries regarded completely different works as his major 
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achievements. As proof one need only note that this paper is not mentioned in his obit- 
uary in the Proceedings of the Royal Society, published by the Netherlands Academy 
of Sciences. Gustav de Vries, a student of Korteweg in whose dissertation (1894) this 
equation first appeared, was unable to obtain any work in a university at all. He spent 
his entire career as a Gymnasium teacher. The subsequent 60-year evolution of wave 
theory seemed to have justified such skepticism. But in 1955 something happened 
that forced a fundamental revision of this point of view. However, as often happens 
in life, there was at first no indication that such pivotal changes were on the way. 

The beginning of this instructive story can be taken as a conversation of two lead- 
ing specialists in the field of atomic and hydrogen weapons Enrico Fermi and Stan 
Ulam in the summer of 1952 at Los Alamos. Both of these famous scholars consid- 
ered their military tasks completed and wished to return to more academic problems. 
As Ulam writes in his fascinating autobiography [U], Fermi and he wanted to find 
some substantive problem, in which they could apply the most powerful computer, 
MANIAC 1, created by their friend John von Neumann (1903-1957). With his char- 
acteristic ingenious intuition Fermi sensed the great value of nonlinear equations for 
future fundamental physical theories. As a result of extended discussions they chose 
a concrete and very difficult problem that had been posed at the beginning of the 
century by E Debye-- to  explain the finite thermal conductivity of solid bodies. 

Their model of a solid body was an anharmonic chain of n point masses connected 
by springs. The number of points in the first experiment was 64. Chains with two 
types of nonlinearity were considered: 

"~i = (Xi+l "]- X i - 1  - -  2 X i )  J r  ~(Xi+I  --  X i )  2 - -  (Xi  - -  Xi-1)  2 (15.3) 

and 
X i  ~--- (Xiq-1 "~- X i - I  - -  2 X i )  "~- ~ ( X i q - I  - -  X i )  3 - -  (Xi  - -  Xi-1)  3, (15.4) 

where xi is the displacement of the ith point from its initial position, and a and 
are coefficients of the quadratic and cubic force terms respectively, acting between 
adjacent masses. The coefficients a and ~ were chosen to be small. It was assumed 
that if the initial solution is chosen to correspond to the linear problem, in the shape 
of a simple sinusoidal wave (of low mode) or a linear combination of low modes, 
then under a nonlinear interaction the energy of the initial state would be uniformly 
distributed over all harmonics (modes of vibration) for large t (as t -~ oo). 

However, the computations that they carried out together with the young physicist 
John Pasta led to very unexpected results. Instead of ergodic behavior of the system, 
they observed a quasi-periodic character: the energy did not thermalize. To the con- 
trary, the energy contained in the lowest mode, after a certain redistribution among the 
low modes, again accumulated in the lowest mode (within a few percent), and then 
the process repeated. 

The example of this remarkable work is the best possible illustration of the classi- 
cal thesis that great discoveries in science always have small beginnings--an attempt 
to solve some interesting particular problem. The unexpected difficulties and para- 
doxes show in particular that they had succeeded in probing something fundamentally 
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new. Such has been the case with nearly all the great discoveries: it suffices to recall 
the theory of relativity, quantum mechanics, and many others. So it was with the work 
of Fermi, Pasta, and Ulam. They had encountered the property of complete integrabil- 
ity of a nonlinear system. But this became clear only ten years later, after the work of 
FPU was published as a laboratory report from Los Alamos, and was connected with 
the names of two American physicists, Martin Kruskal and Norman Zabusky, special- 
ists in plasma theory. They knew the work of FPU and were very much interested in 
the results obtained. It should be remarked that FPU chains become the equations of 
nonlinear strings in the continuous limit. For example, Eq. (15.4) becomes 

Uxt -[- UxUxx -I- Uxxxx = O. 

If we set Ux = v, we obtain the KdV equation. It was therefore completely natural 
for Kruskal and Zabusky to begin with the KdV equation. As a result of the numeri- 
cal experiments that they conducted some amazing properties of solitons in the KdV 
equation were discovered. Solitons were not destroyed by collisions; somehow they 
passed through one another, changing places. The picture of solitons colliding at dif- 
ferent speeds is especially interesting: cl and r Cl >> c2. A soliton moving with 
great speed absorbs a soliton moving with less speed but then emits it again. 

Two years later, in 1967, the Princeton physicists M. Kruskal, J. Green, C. Gard- 
ner, and R. Miura found a theoretical basis for the unusual properties of the KdV 
equation. They showed that KdV equations have an infinite series of conservation 
laws with a whole class of multisoliton solutions, that is, solutions of solitary-wave 
type u ( x  - c i t ) ,  moving with different speeds ci. It was shown that the evolution of 
solitons in the KdV equations is described by a linear Schrodinger equation. 

This remarkable paper can be regarded as the progenitor of the theory of solitons. 
A 1968 paper of P. Lax of the Courant Institute was of fundamental importance for the 
further development of the theory. Lax proposed a regular algebraic construction for 
finding integrable systems. His idea was so simple and basic that it can be described 
in a few lines. 

Suppose given the evolution equation 

ut = K ( u ) .  (15.5) 

If there exists an operator representation u ~ L, ,  where L is a symmetric operator 
such that the operators L (t) = u ( t ) L , u ( t )  -1 are unitarily equivalent, then the eigen- 
values of the operator L u are first integrals (conservation laws) of Eq. (15.5). It is easy 
to see that the unitary equivalence of the operators L (t) is equivalent to the existence 
of a representation of the form 

L ,  = A L  - L A  = [A,L], (15.6) 

wbere A is a skew-symmetric operator, the generator of the one-parameter group Lt. 
For the proof it suffices to differentiate the one-parameter trajectory L (t) with respect 
to t. Thus Lax' method consists of an operator-valued linearization of evolution equa- 
tions. To do this it is necessary to find the operators L and A. For the KdV equation 
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the corresponding linear operator is 

d 2 1 
L = ~ x  2 + gu, (15.7) 

the operator A is given by 

A = U-~x 2 - 3 u + -~x u , 

and the representation L t = [A, L ] is precisely equivalent to the KdV equation. 
In 1971, the Soviet scholars V. Zakharov and A. Shabat found yet another example 

of an integrable system--the nonlinear Schr/Sdinger equation: 

iut + lulZux + uxx = 0. (15.8) 

This equation is important not only from the point of view of applications. It describes 
various phenomena in nonlinear optics (self-focusing optical beams), plasma physics 
(the collapse of Langmuir waves), and other areas, but with the aim of extending the 
applicability of the Lax representation. In contrast to the KdV equation, in which the 
operators L and A are scalar-valued, in the case of the nonlinear Schr6dinger equa- 
tion L and A are 2 • 2-matrix-valued operators. Another result obtained in 1971 by 
Gardner, L. Faddeev, and Zakharov gave a precise meaning to the concept of inte- 
grability of nonlinear evolution equations. They showed that the KdV equation, in 
full analogy with classical mechanics, can be regarded as an infinite-dimensional in- 
tegrable Hamiltonian system, that is, one can represent the trajectories of solutions 
of the KdV equation as quasi-periodic windings of an infinite-dimensional torus with 
Hamiltonian generated by one of the conservation laws (for the KdV equation). The 
coordinates of the "phase" torus are coordinates of "action-angle" type, and are con- 
structed from the scattering data of the linear Schr6dinger operator (15.7). 

Subsequently analogous results were obtained for other integrable evolution equa- 
tions. Thus a large class of nonlinear equations having the following properties was 
identified: the presence of N-solitonsolutions and an infinite number of conservation 
laws, the existence of a representation of Lax type, and a Hamiltonian structure. For 
this class of equations a regular procedure was found for finding solutions, which 
came to be known as the inverse scattering method, since the solutions were con- 
structed from the scattering data of the corresponding linear operator. 

In recent years integrable nonlinear equations seem to have poured from a cornu- 
copia. The exceptionally intense work of mathematicians and physicists from many 
countries has brought about the formation of an articulated theory of integrable non- 
linear systems that is rich in profound and interesting connections with the theory 
of Riemann surfaces, topology, and algebraic geometry. The most significant results 
are connected with the construction of multidimensional integrable systems and the 
identification of a class of solutions with periodic boundary conditions. We shall 
give just one example, in which the intertwining of different branches of the theory 
of integrable systems has led to the solution of a classical mathematical problem--  
Schottky's problem mentioned above (Chapter 4). 
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We begin by describing a class of two-dimensional integrable systems discov- 
ered in plasma physics back in 1970 by two Moscow physicists: B. Kadomtsev and 
V. Petviashvili: 

-'[-Uyy + (U t At- 6UUx + Uxxx)x = 0. (15.9) 

These equations (the KP equations) describe a medium with weak dispersion (pos- 
itive or negative depending on the coefficient of Uyy) and are just as universal in the 
two-dimensional case as the KdV equation is in the one-dimensional case. The KP 
equations have all the properties of a completely integrable system: the presence of 
N-soliton solutions, an infinite number of conservation laws, a generalized Lax pair, 
and the like. 

In discussing integrable equations we have tacitly assumed up to now that the 
solutions are being sought in the class of rapidly decreasing functions (as t ~ ~ ) .  
How does the statement of the problem change if we consider periodic boundary 
conditions? 

In 1974 S. Novikov and P. Lax studied this problem in the case of the KdV equa- 
tion and discovered the remarkable properties of solutions in the periodic case--their 
connection with Schr6dinger operators with periodic potentials Lp. The spectrum of 
an Lp operator partitions the real line into a finite number of intervals called zones. 
Therefore the method of integrating the KdV equation in the periodic case came to 
be known as finite-zone integration. The solution of the periodic problem produced a 
number of new nontrivial properties of integrable systems. Even the definition of the 
analogue of a soliton turned out to be nontrivial. It turns out that the analogue of an 
N-solitonsolution is an N-zone potential. 

By developing the method of finite-zone integration in the case of two spatial 
variables--the KP equation--Novikov's student I. Krichever found a very beautiful 
method of integrating equations of KP type, based on the ideas of algebraic geometry. 
The condition for integrability of two-dimensional systems can be represented as a 
generalized Lax representation: 

L, - Ay = [A, L]. (15.10) 

This turns out to be Krichever's key observation: the commutation condition (15.10) 
is equivalent to the existence of some "sufficiently complete" family of functions 
qb(x, y, t, P)  annihilated by these operators and defined on a Riemann surface with 
a distinguished point P. The functions q~ are defined by their analytic properties; in 
particular they have an essential singularity at P. The solutions of Eqs. (15.9) con- 
structed using such functions can be expressed in terms of the Riemann 0-functions. 
In particular quasi-periodic solutions of the KP equation can be represented in the 
form 

d 2 
u(x, y, t) = q + 2~x 2 lnO(ulx + u2y + u3t + w), (15.11) 

where Ul, u2, and u3 are constant b-periodic vectors of meromorphic differentials 
(with a single pole at the point P), q is a constant, and w is a point of the Jacobian of 
the Riemann surface Rg of genus g. 
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We recall the basic concepts needed to understand formula (15.11), referring to 
any course in the theory of Riemann surfaces for details [V.3]. A basis of holo- 
morphic differentials wi is defined by a system of canonical cuts (cycles) ai, bi 
(i = 1, 2 . . . . .  g) on Rg with intersection matrix ai n aj = bi N by = O, ai (1 bj = ~ i j .  

A canonical basis of forms can be chosen as f wk = 6ik and f wk = Bik, where the 

ai bi 
matr ices  Bik are called the matrices of b-periods and satisfy the Riemann-Frobenius 
condi t ion:  Bik are symmetric and have positive-definite imaginary part. 

The integer lattice of vectors in complex space Cg with coordinates 6ik, Bik defines 
a complex torus T(Rg) = Cg/{B, 6ik}, called the Jacobian of the surface Rg. The 
Riemann 0-function is constructed from the matrix B: 

O(Xl . . . . .  x,)  = ~ exp (zri(Bm, m) + 2~ri(m, x)),  
mEZg 

g 

(x, m) = Z x i m i .  where 
i = I  

In 1977 S. Novikov put forward a very interesting conjecture connected with 
the solution of Schottky's problem: The class of O-solutions of the KP equation 
(15.9) distinguishes the O-functions of Riemann surfaces of genus g in the class of 
all O-functions of the space C g. The proof of Novikov's conjecture was obtained by 
T. Shiota in 1986. 

The connection thus discovered between algebraic geometry and the theory of 
integrable systems has resulted in a profound mutual influence on both mathemati- 
cal disciplines. In algebraic geometry it has led not only to the solution of classical 
problems or a new proof, but also to the construction of more efficient and geomet- 
rically intuitive constructions as a whole. One can even speak of a certain return to 
the traditional classical algebraic geometry of the late nineteenth and early twentieth 
centuries, which was strongly displaced by the abstract constructions of the postwar 
period (the 1950's and 1960's). 

In the light of these recent achievements the undeservedly forgotten work of the 
1920's gained a completely new appreciation. For example, the classification of the 
commutative algebras of scalar differential operators generated by the operators A 
and L, which plays a key role in Krichever's construction, was contained in the work 
of the British mathematicians J.L. Burchnall, T.W. Chaundy, and H.E Baker. Results 
of equal interest, which have found their place in the theory of integrable systems, 
have been obtained by the French mathematicians Ren6 Garnier (1887-1984) and 
Jules Drach (1871-1941). Moving ahead somewhat, we remark that even the famous 
sine-Gordon equation was obtained in a geometric context back in the middle of the 
nineteenth century. 

The motives for studying specific mathematical objects have been completely dif- 
ferent in different periods, but all are united by one common property: If the object 
being studied is substantial and "natural," it will not vanish without a trace, and once 
it has appeared, it will live many and quite unexpected lives. 
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This thesis is fully applicable to the theory of solitons. New equations are con- 
stantly being discovered that admit exact solutions. The number of phenomena that 
are explained using solitons is also increasing. For example, it has been suggested 
that the large stable red spot in Jupiter's atmosphere is a soliton. Attempts to identify 
the blue spot in the atmosphere of Neptune with a soliton seem more doubtful, since 
it is more likely that this spot has already evaporated. The most interesting examples 
of solitons are vortices in liquid crystals and superfluid helium. 

Specific problems associated with integrable models arise in field theory. The 
problem of finding relativistically invariant integrable systems, that is, invariant rela- 
tive to transformations in the Lorentz group, is of obvious interest. For these systems 
one can consider the problem of quantization in a natural way. Unfortunately the ma- 
jority of known examples are two-dimensional systems, with one space coordinate 
and one time coordinate. For field theory, where space-time is the Minkowski four- 
dimensional space, this is a serious constraint. Nonetheless, a number of properties 
of two-dimensional models, in particular the interaction of solitons are also of interest 
for realistic four-dimensional theories. 

Several relativistically invariant two-dimensional integrable models have been 
found. The best-known such equation is called the "sine-Gordon equation," 

u ,  - Uxx = sin u. (15.12) 

The name "sine-Gordon" now in general use for Eq. (15.12) was proposed by 
M. Kruskal around 1970 by association with the Klein-Gordon equation 1 (O. Klein 
and W. Gordon) but the equation itself is no less universal than the KdV equation in 
the number of different applications, and it has an even more ancient history. 

Equation (15.12) appears in the work of geometers in the mid-1830's. For ex- 
ample the surfaces of revolution of constant negative curvature found by F. Minding 
(1838) and E. Beltrami (1872) are solutions of Eq. (15.12). Equation (15.12) seems 
to have been known even to Gauss. 

Equation (15.12) arises as a very special case in the curious "applied" paper "On 
cutting fabric in the manufacture of clothing." In 1878 P.L. Chebyshev, in his paper 
"Sur la coupe des v6tements," read at the Association Fran~aise pour l'Avancement 
des Sciences, derived the equation for a grid on a surface having the following prop- 
erties: In each quadrangle of the grid the lengths of the opposite sides are equal (such 
grids later came to be called Chebyshev grids). In the coordinates of a Chebyshev 
grid the element of length on the surface can be represented in the form 

ds 2 = dx  2 + 2 cos ~o dx  dy + dy 2, 

where ~o(x, y) is the angle between the grid lines and x and y are the arc lengths of 
the intersecting coordinate lines of the grid. Computing the Gaussian curvature of the 
surface, Chebyshev obtained the equation: 

qgxy = - K  sin ~o. (15.13) 

1The replacement of Klein but not Gordon by "sine" seems to be for the sake of euphony and is not 
discriminatory. 
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In the case of a surface of constant negative curvature (K = - 1) the grid lines become 
asymptotic lines and Eq. (15.13) becomes the sine-Gordon equation. Eq. (15.12) is 
one of the equations of the Gauss-Codazzi-Peterson system that define the embedding 
of a surface of constant negative curvature into I~ 3. Later (1902) Hilbert, in analyzing 
Eq. (15.12), proved the impossibility of an isometric embedding of a complete surface 
of constant negative curvature (the hyperbolic plane) in ~3. 

A little earlier than Chebyshev the Swedish mathematician A. B/icklund had be- 
gun the systematic study of the solutions of the sine-Gordon equation. He constructed 
a hierarchy of solutions of the sine-Gordon equation. B/icklund's construction, which 
makes it possible to construct new solutions from known ones, later came to be known 
as the B/icklund transform. This method is applicable to all integrable evolution equa- 
tions and is widely used in modern research. 

One of the first applications of the sine-Gordon equation in physics is connected 
with the problem of the motion of dislocations in a crystal (Ya. Frenkel, 1936). The 
sine-Gordon equation arose later in widely diverse areas of physics. For example, 
it describes the motion of a magnetic flux in Josephson superconductors and Bloch 
walls in magnetic crystals. 

But the most important applications of the sine-Gordon equation are connected 
with elementary particle physics. The sine-Gordon equation can be interpreted as 
the simplest nonlinear model of field theory. The soliton solutions that exist in it 
describe particles. The sine-Gordon equation was proposed by the British physicist 
T. Skyrme (1922-1987) as early as 1958, as a nonlinear generalization of the Klein- 
Gordon equation. Skyrme is the author of a number of original ideas in field theory 
and nuclear physics that were insufficiently appreciated during his lifetime. He also 
has the honor (partly in collaboration with T. Perring, 1962) of having conducted 
the first numerical experiments on elastic collisions of solitons in the sine-Gordon 
model. Skyrme and Perring conducted essentially the same experiment that Kruskal 
and Zabusky had conducted on the KdV equation in 1965, and they obtained similar 
results, but did not develop their theory. As we now know, the sine-Gordon equation 
is also a completely integrable system. The study of the sine-Gordon equation from 
the point of view of the theory of integrable systems made it possible not only to 
include it in the general scheme, but also to construct a quantum analogue of it, which 
had great value for field theory. A unified approach was found in the search for 
solutions of quantum integrable systems: the quantum inverse method, which has a 
large sphere of applications and has revealed new and unexpected connections with 
such objects of mathematics as infinite-dimensional Lie algebras, knots, loops, and 
many others. 

Practically all the achievements discussed in this chapter involve two-dimensional 
integrable systems. In field theory an exceptional number of integrable four-dimen- 
sional systems are known. The most interesting result is the proof that the duality 
equation is integrable. It was conjectured that the "pure" Yang-Mills equation itself 
is also an integrable system, but an analysis of several special cases has shown that 
this conjecture is wrong. 

Solitons arise not only in integrable systems. For example, it is known that field 
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theory with the Lagrangian 

(~t4,) 2 + (~x4,) 2 - u ( r  

where the potential U(~b), the familiar potential of Goldstone, U(~b) = (#2/2)~b2 q- 
(~./4)~b 4, has a soliton solution; however, it does not appear to be a completely inte- 
grable system. 

The 't Hooft-Polyakov monopole can also be interpreted as a soliton. Solitons ap- 
pear in all theories with spontaneous symmetry breaking. Their properties are closely 
associated with the topology of the space of gauge fields. The application of the the- 
ory of solitons makes it possible to obtain important results on the structure of vacua 
and processes involving real particles. A whole series of interesting problems arise, 
but they are all too close to the frontier of science and have not matured enough for 
popular exposition. 



Chapter 16 

Knots, Links, and Physics 

K NOTS are the oldest object of study in topology. They form the subject matter 
of the greater part of Listing's first treatise, Vorstudien zur Topologie. This 

venerable division of topology, which flourished in the late 1920's and early 1930's, 
withered and faded away after the war. Such things happen to entire subjects as well 
as to people. It was not that there were no outstanding unsolved problems left in 
knot theory. For example, the following natural problem remained open: How can a 
knot be distinguished from its mirror image? The main goal of researchers was to find 
systems of knot invariants that would provide a simple procedure to distinguish knots. 
The most important knot invariant, which made it possible to distinguish knots quite 
simply in a number of cases, was a polynomial invariant, more precisely the Laurent 
invariant, discovered by the American mathematician J.W. Alexander (1888-1971). 
The Alexander polynomial Al (t) is symmetric under the change of variable t ~-~ ! 

t 

and does not make it possible to distinguish two knots that are mirror images of each 
other. 

Despite some interesting particular results, knot theory lay on the periphery of 
modern mathematics until a 1984 event that shook the mathematical community. 
The New Zealander Vaughan Jones, while working in an entirely different part of 
mathematics---operator theory, or more precisely, the study of von Neumann alge- 
bras-----discovered a new class of polynomial invariants that were much stronger than 
the Alexander polynomials. With the use of Jones' invariants it was possible to solve 
specific complicated problems, in particular, the problem of deciding for a large class 
of knots whether a knot and its mirror image are isotopic. In some special cases, for 
example, for the trefoil (Fig. 16.1), this had been known previously, but the proof had 
required special devices. 

Jones' method of proof was as interesting as the result itself, combining such 
seemingly diverse areas of mathematics as knot theory and von Neumann algebras. 
The main intermediate link in Jones' construction was Emil Artin's theory of braids. 
I shall confine myself to a sketch of Jones' main ideas, referring the interested reader 
to his book [Jo]. 

167 
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Figure 16.1: The trefoil knot. 

16.1 Von Neumann Algebras 

In the late 1920's, in connection with an analysis of the mathematical foundations 
of quantum mechanics, von Neumann began the study of algebras of operators with 
special commutativity properties. He studied an algebra A(~)  of linear operators on 
a Hilbert space ~ satisfying the following conditions: 

(a) involutiveness (for each operator A in the algebra A, its adjoint A* is also in 
A); 

(b) the algebra A is closed under the operation * in the weak operator topology, 
that is, if An is a sequence of operators in A(~)  and (Anx, y) -* (Ax, y) for some 
operator A and all vectors x and y in ~ ,  then A E A.(~). 

Avon  Neumann algebra A(~)  is characterized by the interaction with its commu- 
tant A ' (~) ,  the algebra of operators that commute with A(~).  It satisfies the condition 

(c) A(~)  A A' (~)  = e(~) ,  where e (~ )  is a commutative algebra. 

The most important examples of von Neumann algebras are algebras whose center 
consists of scalars, that is, algebras A(~)  for which e (~)  consists of multiples of the 
identity operator Q.E, where E is the identity of the algebra ./t(~)). A ring A(~)  with 
center {)~E} is called a factor. The simplest example of a factor is the ring ~ ( ~ )  of all 
bounded operators on the Hilbert space ~ .  In the finite-dimensional case the ring of 
operators (matrices) on n-dimensional space R n is the only example of a factor. This 
follows easily from the classical lemma of I. Schur. In infinite-dimensional spaces 
the situation is at once richer and more complex. An articulated and profound theory 
of factors was developed in a series of fundamental papers written by von Neumann 
partly in collaboration with EJ. Murray. A number of concepts and constructions 
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introduced by von Neumann and Murray determined the development of the theory of 
factors for many years to come. The most important characteristic in the classification 
of a factor is its dimension. The dimension dim ( ~ )  of a factor ~ has very exotic 
properties. 

16.1.1 The Dimension of a Factor 

Let us begin with a finite-dimensional example. In this case we have ~ --- A(/l~n), 
and the factor is numbered by a natural parameter, the dimension of the space ~n on 
which the full matrix algebra operates. In the infinite-dimensional case the analogous 
introduction of  dimension encounters a natural obstacle, since all Hilbert spaces are 
isomorphic. The remarkable idea of von Neumann and Murray was to introduce ana- 
logues of finite-dimensional spaces in the infinite-dimensional situation. Such spaces 
are called finite spaces, and a concept of dimension can be defined for them by us- 
ing a procedure known in high-school mathematics as the Euclidean algorithm or as 
division with remainder. 

We need a few background concepts. Suppose given a factor ~ and a Hilbert 
space 5s on which it operates. ~ can be thought of as a subalgebra of ~(5s Consider 
a sequence of Hilbert spaces ~'~i C ~'~ attached to ~ .  This means that the mapping of  
the space 9s into 9s is carried out using projection operators Pi belonging to ~ .  The 
set of projections {Pi} can be ordered. We shall say that the operator Pi dominates 
the operator Pj, denoting this fact Pi > Pj,  if there exists an operator u ~ ~ such 
that uu* = Pi and u*uPj = u*u. The projections Pi and Pj are equivalent (Pi "" Pj) 
if the following condition holds: there exists an operator u such that uu* = Pi and 
u*u = Pj. It can be shown that the equivalence Pi ~ Pj means that the conditions 
Pi > Pj and Pj > Pi both hold simultaneously. 

For bounded operators the equivalence of the two projections/'1 and/ '2  is equiv- 
alent to the condition that their ranges have the same dimension. But factor theory 
allows unbounded operators, requiring more delicate study. Murray and von Neu- 
mann proved that one of  the two conditions Pi > Pj and Pj > Pi always holds for 
projections Pi belonging to a factor ~ .  

A projection P1 is called finite if the conditions P2 < P1,/'1 ~/92 imply that Pa = 
/~ otherwise it is infinite. This terminology carries over naturally to the attached 
Hilbert spaces. A projection P is minimal if it dominates only the zero projection in 
~ .  The existence of projections with the properties just listed makes it possible to 
separate factors into disjoint classes: 

Type I: ~ contains a minimal projection Pmin; 

Type IIl: ~ does not contain a minimal projection Pmin, but it does contain a finite 
projection Pfin; 

Type II~:  there is no Pmin, but the factor ~ contains both finite and infinite pro- 
jections; 

Type III: The only finite projection in ~ is the zero projection. 
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Following Murray and von Neumann, one can define the dimension d ( ~ )  of  the 
factor ~ ,  a numerical function d : ~ ~ [0, oo] that is uniquely determined by the 
following properties: 

(1) d(O) = O; 

(2)d  Pi = d(Pi) i f P i _ t _ P j f o r i ~ j ;  
i=1 i=1 

(3) d(P~) = d(Pj) if Pi "" Pj. 

It can be shown that the condition d(P1) = d(Pz) implies that P1 "" P2, so that 
the different types of factors are uniquely determined by the function d(P). If the 
function d(P) is normalized, it assumes the following values: 

In: d = {1 . . . . .  n}; 

Ioc: d = c~; 

II1: d ~ [0, 1] (the whole interval); 

I I~:  d ~ [0, oo]; 

III: d = 0 or d = oo. 

The analogy with sets of numbers becomes especially obvious at this point. We 
shall demonstrate this using the example of type I,. We denote the range of  the 
function d(P) by A. By definition of  a factor of  type I there is a smallest posi- 
tive element ot in the A. Let 3 be any element of A. For some integer n we have 
not < fl < (n + Dot. It easily follows from property (2) above that/3 - not ~ A. But 
/~ - not < ot. Since ot is the minimal positive element, it follows that/~ - not = 0, that 
is,/~ = not. It also follows from property (2) that all the elements {ot . . . . .  (n - 1)ot} 
belong to A. Normalizing the quantity ot, we obtain the spectrum of the dimension 
d(P) for the factor In. Similar reasoning enables us to obtain the spectrum of d(P) 
for factors of types II and III. 

The most interesting factors for our purposes are those of type II1. These fac- 
tors arise most naturally in the theory of representations of discrete groups. For ex- 
ample, the algebra of operators generated by left translations (or right translations) 
on the group of rational automorphisms of the plane is a factor of type II1. Here 

G = { ( 0  b ) }  i s t h e g r ~ 1 7 6 2 1 5 1 7 6 1 7 6 1 7 6  

nal numbers. Although a description of the factors of type II1 is incomparably more 
complicated than in the case of type I, these factors do possess one unifying property 
of decisive significance for their application in knot theory, namely the existence of  
a trace. The trace function Tr (A) is defined for all Hermitian operators A ~ ~ and 
satisfies all the standard properties of a trace, including the properties Tr (1) = 1, 
Tr (AB) = Tr (BA), and Tr (A'A) > 0 when A 5~ 0. 

Although a complete description of factors of type II1 (up to isomorphism) has 
not yet been obtained, there is an important subclass of  factors for which a complete 
description does exist. Those factors, which are closest to finite-dimensional factors, 
are called the hyperfinite factors. A hyperfinite factor ~ is defined as the limit of an 
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increasing sequence of finite-dimensional factors: 3~ = {I,}. The limit is understood 
in the sense of the weak topology. Murray and von Neumann proved that among the 
factors of type II1 there exists a hyperfinite factor that is unique (up to isomorphism). 
They also constructed examples of factors of type II1 that are not hyperfinite. Subse- 
quently continuous families of  nonhyperfinite factors of type II1 were found. To carry 
out a more detailed study of factors Murray and von Neumann introduced another 
numerical characteristic, the coupling constant, or, in modern terminology, the index 
of the factor Ind(~) .  The index measures the size of a Hilbert space 5( compared to 
the space L 2 ( ~ )  of square-integrable functions on ~ .  The index can be defined for 
any pair of factors N C ~ :  

Ind2v2V[ = d imN(L2(~)) .  

The study of the properties of  IndN3V~ led Jones to an unexpected result. 

Theorem 16.1 (Jones' Theorem). 

1. I f  I n d N ~  < 4, then there exists an integer n, n > 3, for which IndN3~ = 
4cos2 7r/n; 

2. For each n >_ 3 there exists a subfactor ~o of a hyperfinite factor ~R for which 
Ind:R0~ = 4cos  2 Jr~n; 

3. For each real number r >_ 4 there exists a subfactor ~o C ~ with Ind~o~ = r. 

Jones' proof was based on an inductive construction of a sequential transition 
from the subfactor N to ~ using projection operators PN : L2(3V[) --+ LE(3q)  �9 Con- 
sider the sequence 3Y[ i defined as follows: ~ 0  = N, ~M1 = ~ . . . . .  ~n  = (~M, P1 . . . . .  
Pn--1), where Pi is the projection o f  L2(3V[I) o n t o  L2(3v[ i_ l ) .  The projections Pi have 
the following properties: 

(a) P}---- P i =  P * 
(b) PiPj = PjPi when li - Jl >- 2 
(c) PiPi4-1Pi = rPi ,  where r = Ind~Z{ (16.1) 
(d) Tr(wP,+,) = rTr(w), where w is 
the word generated by {1, P1 . . . . .  P,}. 

Jones proved this theorem in 1983. There remained one more step before it could 
be applied to knots. In taking that step Jones received help from Joan Birman, a 
prominent specialist in knot theory. 

16.2 The Theory of Braids 

Anyone who agrees that mathematical constructs have a relation to the real world 
must be amazed that the theory of  braids did not appear until the twentieth century, 
especially considering that women's  braids, horses' manes, ropes, and many other 
examples could have suggested a mathematical study of  this subject. Serious doubts 
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as to the correctness of such a pragmatic development of science forces me to confine 
myself to mentioning just these known facts. One way or another, the mathematical 
theory of braids arose in 1925 in Artin's paper "Theorie der Z6pfe." Subsequently, 
as often happens, it became clear that braid groups had occurred in earlier papers by 
E Klein, R. Fricke, and A. Hurwitz. 

16.2.1 The Group of Braids 

Consider two sets, each consisting of n points. Arrange the first collection (.If 1 . . . . .  X n )  

on the plane z = 1 (~2 C ]~3) and the second (x~, x~ . . . . .  x',) on the plane z = 0 
(~02 C I~3). Join the n "upper" points to the n "lower" points by nonintersecting 
smooth curves ("threads"). Each such set of n threads (determined up to an isotopy) 
is called a braid. A multiplication can be defined on the set of  braids, turning it into 
a group. The product of  braids al and a2 is the braid a3 obtained by identifying 
the lower set of points of  the braid ~rl with the upper set of the braid a2. The iden- 
tity element e and the inverse element a -1 are determined with equal ease (see Fig. 
16.2). Intuitively a braid can be thought of  as a set of disjoint trajectories swept out 
by moving points xi (t). The inverse element is then obtained by simple time reversal. 
Denoting the group of braids with n threads by B,,  Artin proved that the group B, is 
generated by n - 1 elements al . . . . .  or,_ 1 (Fig. 16.2) satisfying the relations: 

aia i = trjcri, when li - jl > 2, 
(16.2) 

(Ti tTi+lt7  i = r 1. 

To close our chain of reasoning we need to explain the connection between braids, 
knots, and links. It is easy to see that each braid generates a certain knot or link. For 
this it suffices to "close off" the braid, that is, to connect the corresponding lower 
point with the upper point (Fig. 16.1). Alexander's result, proving that one can obtain 
any knot or link in this way, is much more complicated. Unfortunately this procedure 
is highly nonunique. The problem of determining the minimal number of threads 
needed to construct a given knot is extremely complicated and has not yet been solved 
in general. 

The connection between knots and braids suggests studying which operations in 
the group of braids define isotopically equivalent knots. This problem was posed and 
solved by A.A. Markov, Jr., who showed that two types of transformations in the 
group of  braids lead to equivalent knots. Let a ~ B,,. Then the following operations 
define equivalent knots: 

(1) a w-~ ctcra -1, where a ~ B. ,  (16.3) 
(2) a w-> crtr~ 1, where o'. ~ Bn+l, 

and trn is the nth generator of Bn+l. We now construct a representation of the group 
B, in the algebra generated by the projections Pi : {1, P1 . . . . .  P,-1}. Let us denote 
the element tP,. - (1 - Pi) by gi, where the parameter t is connected with r by the 



Knots, Links, and Physics 173 

Figure 16.2: The braid group. 

relation r = 2 + t + t -1. Then relation (16.1) transforms into 

(1) g2 i = (t - -1)gi  + t 

(2) gigi+lgi = gi+lgigi+l (16.4) 
(3) gigj = gjgi when li - j l  > 2 
(4) gigi+lgi + gigi+l + gi+lgi + gi + gi+l + 1 = O. 

The mapping ~0 : ai --* gi defines a representation of the group Bn for each value of t. 
If we take the trace of this representation Tr(cp(a)), it is easy to see that it is covariant 
relative to the transformations (16.4) and hence is an invariant not only of the braid a 
but also of  the knot or link 3" corresponding to it. 

Definition 16.1 The Jones polynomial of the link (or knot) L is the polynomial 

n- - I  

t + 1"~ te/2Tr(~o(a)), 
VL (') = ~/7" J 

where a E B~, L = r~, and the exponent e is the sum of the exponents of  the word a 
when it is decomposed into its generators or,. 

For the trefoil, which is generated by the braid a 3 ~ B2 (Fig. 16.1), the Jones 
polynomial is easy to compute by using the relations (16.4): 

Tr(t7?) = Tr((t 3 + 1)P - 1) -- (t3 + 1)l 
(t + 1) 2 

and consequently 

1, 

( , + l h  ,3 t 4 VL (t) = ~/7 J (v~)3Tr(a3) = t - + 

Thus VL (t) # VL (~), and hence it follows immediately that the trefoil is not isotopic 
to its mirror image. The Jones polynomials distinguish a very large number of  knots 
and their mirror images, but do not solve the problem completely, since there exist 
knots for which VL (t) and VL (1) are the same. The first example of  this kind has nine 
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intersections--the knot g42 from the book of Rolfsen [Ro]. Using Jones polynomials 
one can often obtain a lower bound for the number of threads in a braid generating 
the given knot. For computing the Jones polynomials it is convenient to use recur- 
sion (the skein relations). First introduced by Alexander in 1928, the skein relations 
were basically forgotten and rediscovered 40 years later by John Conway, who, by 
adding "initial conditions" to them, demonstrated their effectiveness in computing 
the Alexander polynomials of knots and links. 

16.2.2 The Skein Relations 

The transition from a link L 1 to a link L 2 can be regarded as a chain of local transfor- 
mations of the following form: 

L+ L_ L0 

The Alexander polynomial AL satisfies the relation 

If we adjoin Conway's "initial conditions" 

(a) AL(t) = 1 i fL is the trivial link 

(b) AL (t) = 0 if L is a set of unlinked curves (circles), a split link, 
The Alexander polynomial can be computed by induction for any link. 

For Jones polynomials the skein relations have the form 

Jones' result was immediately developed in several directions. Since the Jones 
polynomials do not subsume the Alexander polynomial, a two-parameter family of 
polynomials was constructed, containing the Alexander and Jones polynomials re- 
spectively in certain degenerate variables. Other polynomial invariants were also 
found that were not reducible to the Jones polynomial. A very interesting invariant is 
the Kauffman polynomial, which can be constructed immediately from the diagram 
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of the link. The Kauffman polynomial is closely connected with lattice models of sta- 
tistical physics. It is well adapted for studying the behavior of knots under a reflection 
and a change in the orientation of the ambient space. 

But the most important events occurred in 1989, when two independent papers 
appeared. The first of these, written by E. Witten, was entitled, "Quantum field theory 
and the Jones polynomial." In that paper Witten pointed out the connection between 
the Jones polynomials and topological field theories. Let M 3 be a three-dimensional 
manifold and L a link consisting ofn circles {li}. On each manifold M 3 one can define 
a field model with Lagrangian L: 

f ( 2A ) L = k  Tr A A d A +  3 A A A A  . 

M 3 

Here A is the Yang-Mills connection generated by the bundle over M 3 with a certain 
gauge group G. The link L is connected with the functional 

f 
WR(li) -~- TrRP exp ] Ai dxi, 

, i  
l i  

(16.5) 

where R is an irreducible representation of the group G and P is the normal ordering 
needed to define the exponential of a connection with values in the Lie algebra of the 
group G. If the expression (16.5) is integrated with respect to the Feynman measure 
�9 the integral (correlation function) 

z = f �9 exp(iL)l-IWR~ (li) 

defines the Jones invariants of the link L. Witten's idea made it possible to approach 
the computation of invariants of links by using the immense technical resources of 
quantum field theory. It also gave a completely natural solution to the problem of 
constructing the analogues of the Jones polynomials for knots and links imbedded in 
an arbitrary three-dimensional manifold. As is known, the properties of knots depend 
heavily on the topology of the ambient space, and Jones' original approach could not 
be easily carried over to manifolds different from the sphere $3. 

Witten's ideas, possessing great heuristic power, were based on a number of phys- 
ical structures with weak mathematical underpinnings. This was particularly true of 
the use of the Feynman measure. Nevertheless, nearly all of Witten's assertions were 
eventually proved. This turned out to be a highly nontrivial problem requiring the ap- 
plication of many abstract structures, including quantum groups and category theory. 

Completely different ideas form the basis of the paper of the Moscow mathemati- 
cian V. Vasil'ev. His point of departure was singularity theory, which studies the typi- 
cal properties of smooth mappings. Vasil'ev invariants are constructed directly for the 
family of knots. Consider a set of smooth mappings S 1 --~ S 3 having singularities or 
self-intersections. This set forms a hypersurface �9 in the space of mappings S 1 --+ $3 



176 Riemann, Topology, and Physics 

and is called the discriminant. The nonsingular points of the discriminant correspond 
to mappings with one point of transversal self-intersection, while the singularities are 
mappings whose derivatives have zeros, or mappings with nontransversal or multiple 
intersections. Any numerical invariant of the isotopic type of a knot can be defined 
using the discriminant. To be specific, to each nonsingular portion of the discriminant 
(that is, to any connected component of its set of nonsingular points), one can ascribe 
an indexmthe difference of the values of the invariant for the neighboring knots sepa- 
rated by this portion. This set of indices is not arbitrary, and to be well-defined it must 
satisfy a homological condition: the sum of the components taken with certain coef- 
ficients must be homologous to zero in the space K of all mappings S 3 ~ S 1. Thus 
Vasil'ev numerical invariants are defined as locally constant functions on the space 
of imbeddings of S 1 in S 3, or, more precisely, as elements of the zero-dimensional 
cohomology group H~ \ 29). Along with the group H~ \ 29), the study of the 
higher cohomology groups Hi(K \ 29) is also of interest. The groups Hi(K \ 29) 
(i > O) can be computed using a spectral sequence whose filtration is determined by 
the types and multiplicities of the singularities of the discriminant. 

A fundamental problem of knot theory, the existence of a complete system of in- 
variants in the Vasil'ev theory, reduces to determining the convergence of the spectral 
sequence. There is as yet no complete answer, but Vasil'ev's theory seems the most 
realistic route toward a solution. The results obtained in this direction confirm this 
point of view. In particular, it has been shown that both invariants of polynomial type 
(the polynomials of Jones, Alexander, and others) and the majority of classical invari- 
ants of the "pre-Jones" era (the Milnor coefficients and others) can be imbedded in the 
system of Vasil'ev invariants. Comparison with Witten's approach has also turned out 
to be promising. Perturbation theory, which was developed in topological field theory, 
makes it possible to obtain very explicit integral formulas for the Vasil'ev invariants of 
finite order. Thus, three formally distinct approaches to the theory of knots and links 
turned out to be closely connected with one another. The role of these methods in the 
study of the structure of three-dimensional manifolds seems still more important; in 
this area the famous Poincar6 conjecture remains unresolved up to the present. Un- 
doubtedly these theories, which connect such diverse structures as quantum groups, 
von Neumann algebras, Feynman integrals, and much else, conceal unexpected and 
profound discoveries. 

Up to now we have discussed the purely mathematical aspects of knot theory, in 
which certain physical ideas have directly or indirectly turned out to have significant 
influence on the development of the theory. Let us now consider examples of the op- 
posite process, some problems from traditional areas of physics in which applications 
of the theory of knots and links have real physical interest. 

16.3 Condensed Matter Theory 

How can knots and chains form in such orderly media as liquid crystals or superfiuid 
liquids? Only a very indirect and incomplete answer can be given to this fundamental 
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and highly nontrivial question. In the first place, experiments are known in which 
linked defects were observed; in the second place (and perhaps also in the first place) 
there is a fruitful operational principle in physics that requires the investigation of all 
possibilities not forbidden by the fundamental principles (the conservation laws, vi- 
olation of causality, and the like). Among the systems in which linked defects have 
really been observed, we distinguish liquid crystals of nematic and cholesteric types. 
Other potential candidates are the quantum superfluid liquids 4He and 3He, in which 
linear defects of vortex thread and ring type have been observed. Unfortunately the 
study of vortices in 4He and even more in 3He is a difficult experimental problem, 
and vorticial rings have not yet been observed. But there are various indirect results, 
including computer models, showing that such configurations are possible. A number 
of observed effects are connected with the formation of linked vorticial tubes, for ex- 
ample, the occurrence of a chaotic (turbulent) mode in 4He. As we have emphasized 
above (Chapter 12), liquid crystals, superfluid liquids, and neutron stars, which are 
so different in their physical characteristics, are very much alike from the mathemat- 
ical point of view. All are determined by specifying the order parameter, and can be 
described by one or another of the Ginzburg-Landau equations. For that reason it is 
very natural to study the properties of linked defects in the context of some general 
scheme. From the topological point of view the theory of linked defects is the clas- 
sical theory of links complicated by the introduction of the order parameter, which 
characterizes the corresponding thermodynamic phase. By developing these consid- 
erations, V. Retakh and the author proposed in 1984 a general method of describing 
linked defects. We shall illustrate the results of this paper using two examples having 
immediate physical applications. 

16.3.1 Example 1 

Consider the following problem. What is the structure of a system of topological 
invariants that would make it possible to decide whether one can decouple (using 
motions in ]~3) a system of linked closed curves (loops). A well-known invariant 
of this type is the classical Gauss linking coefficient ka of two loops. But knowing 
this coefficient is not enough to solve the problem of decoupling. Well-known ex- 
amples such as the Whitehead link and the Borromean rings (Fig. 16.3) show that 
the condition ka (11, 12) = 0 gives only a necessary condition for decoupling the two 
curves. For that reason, to solve the problem of decoupling, it is necessary to con- 
struct higher-order invariants. Such invariants are the high-order linking coefficients, 
which generalize the Gauss coefficients and were constructed in our paper. We shall 
now show what the high-order linking coefficients look like in the simplest case of a 
link of three curves I = (11,/2, 13) embedded in S 3. 

We begin with the first-order linking coefficient kl (11, 12) defined for any pair of 
linked curves ll and 12; it is the algebraic sum of the number of intersections of the 
curve ll with a surface Z spanning the curve 12 (with the orientation induced by 12). 
This quantity is called the intersection index of Z and 11, and is denoted Ind(Z, ll). 
The number k1(11,12) is equal to the Gauss coefficient ka(ll,/2). For ka(ll, 12) there 
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Figure 16.3: (a) The Whitehead link (b) Borromean rings. 

exists an integral representation: 

fulAu2=--fu2Aul =k6(ll,lz).  (16.6) 

B1 B2 

Here Bi C S 3 are tubular neighborhoods of the c u r v e s  li ( i  = 1 ,  2 ) ,  and ui are the 
differential one-forms dual to the curves ui in the sense of Alexander. The formulas 
(16.6) can be extended to the entire sphere S 3 by introducing closed 2-forms vi on 

•3 \ li such that / vi = Ind(Z,  li), where Z is a (surface) cycle in S 3 \ li. The 3-forms 
t /  

Z 
U 1 /~ 13 2 and vl /x u2 are defined on S 3, and 

f u l A v z = - - f v l A u 2 = k G ( l l , 1 2 ) .  (16.7) 
S3 ~3 

For a link consisting o f n  curves l = ( l l  . . . . .  In) we def ine/q( l )  as the quantity 

/ q ( l ) =  max Ikl(li, lj)l. (16.8) 
l<i<j<_n 

Consider the link l = (l l , /2,  la) with c o n d i t i o n  k l ( l )  = 0. Then there exist a one-form 

U12 o n  ~3 \ ( l l  O 12) and 2-forms v12 and v'12 on ~3 \ (la t2 12) s u c h  that du12 = Ul /x  tt2, 

d1)12 ~-  --l)1 A U2, and dv'12 = ul/x v2. We now construct the differential forms 

U123 ~ U12 A U 3 "q- U 1 /X U23 

13123 ~ --l)12 /k U 3 --~ U 1 A //23 

P~123 ~ U12 A 1) 3 --~ U 1 A U23. 
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The forms u123, 1)123, and v'123 are closed, and the forms 1)123, 1)r123 are defined on $3. It 
can be proved that the integrals of the forms/-/123, 1)123, and 1)'123 over cycles are equal: 

f f f '  UI23 = U123 ~ 1)123 

BI ~3 ~3 

(16.9) 

and are integers, given a suitable normalization. These numbers are called the linking 
coefficients of l = (ll, 12, 13) of  degree 2 and denoted k2(l). For an arbitrary link 
l = (ll . . . . .  l ,)  the coefficient ice(l) is defined in analogy with (16.8): 

/ r  : max Ik2(//,lj,lk)[. 
l<i<j<k<_n 

Formulas of type (16.7) and (16.9) found immediate application in a number of prob- 
lems of physics, in particular in magnetohydrodynamics. We shall consider one such 
problem later, but right now let us take up Example 2. 

16.3.2 Example 2 

Assume that we have a system of linked defects concentrated in a volume f2. For 
definiteness we shall assume f2 --. S 3. A specific physical system is determined by 
the order parameter qJ and the domain of the order parameter (the space of internal 
states) V. In Chapter 12 we studied two types of  liquid crystals in detail: the uniaxial 
nematic with V ~ p2 and the cholesteric, for which the space V is isomorphic to 
the space SO(3)/Z2 x Z2. The contractibility of a single defect is determined by the 
nontriviality of the fundamental group :rl (V). But the study of a system of linked 
defects requires a study of the entire sequence 

rrl(• 3 \ l) - - ~  rrl(V). (16.10) 

The contractibility or noncontractibility of a link has great importance, since from the 
physical point of view a contractible link is not a defect. The condition of contractibil- 
ity of links is determined by the linking coefficients and the group 7'/" 1 ( V ) .  The general 
theory is rather complicated, and so I shall confine myself  to an illustrative elemen- 
tary example. Suppose the link (defect) l consists of two curves ll and 12. If ~P(ll) 
is contractible in V, the coefficient k1(ll, 12) is even. This fact has a curious phys- 
ical consequence. If we know from energy considerations that k1(ll, 12) < 1, then 
k(ll,/2) = 0, and the curves are homotopically separable. Examples of such links 
have been observed in nematic liquid crystals in the experiments of Y. Bouligand. 

16.3.3 Magnetohydrodynamics 

Magnetohydrodynamics is the study of the motion of a conducting fluid or gas in a 
magnetic field. The equations of magnetohydrodynamics, which are a combination 
of the Maxwell equations and the equations of fluid mechanics are extremely com- 
plicated, and conceal not only physical but also topological profundities. We shall 
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consider only one physically interesting problem, that of the reconnection of mag- 
netic lines of force in a plasma. The basic equation that describes the variation of the 
magnetic field H taking account of the finite conductivity of the medium has the form 

OH 
- -  = curl [v, H] - curl (vcurl H). (16.11) 
Ot 

Here v is the magnetic viscosity, and v is the velocity of the medium. 
A natural question arises. Do there exist invariants that characterize the structure 

of the set of lines of force? In general the answer is simple: for v = 0 any topological 
invariant of the initial configuration of the lines of force is conserved. (This follows 
from a well-known theorem on frozen-in fields.) When v # 0 there are no topological 
invariants. However a realistic physical picture turns out to be much more interesting. 
If we consider the velocity of destruction of invariants at very small viscosities, we 
compute that at characteristic times of order << rd (where rd is the so-called diffusion 
time, rd = L2v -1, L being the characteristic scale of variation of the configuration 
of the plasma and the field H) the topological structure is not destroyed completely. 
For that reason the question of conservation of topological invariants in this case is 
completely natural and correct. 

This problem was solved by R. Taylor in 1974 under certain additional restric- 
tions. He proved that the following quantity is conserved: 

= f ( A .  H)dv.  (16.12) h 

f2 

Here A is the vector potential of the field H, H = curiA, and f2 is the total volume 
of the system on whose boundary H• ---- 0. Taylor's result can be restated as follows. 
A rapid restructuring of the topology of the lines of force for t << rd can change the 
linking of individual lines of force as a result of small-scale turbulence, but the total 
linking is conserved. Later B. Kadomtsev stated this result for the configurations of 
magnetic fields that vary in large-scale reconnections of lines of force. E Sasorov and 
the author gave a rigorous definition of the reconnection process in terms of cutting 
and pasting of tubes of force. This definition makes it possible to give an exact mean- 
ing to the assertion that the single topological invariant h is conserved in the problem 
of rapid reconnection in simply connected domains. In multiconnected domains the 
magnetic flux is also conserved. Referring the reader interested in the physical prob- 
lem to the paper [MS], I wish to spend a brief moment on the topological properties 
of invariants. 

In the case of ideal magnetohydrodynamics Eq. (16.11) simplifies: 

OH 
- -  = curl [v, HI. (16.13) 
Ot 

In this case any invariant of the initial configuration of magnetic lines of force, which 
is conserved by virtue of the theorem on frozen-in fields, will be an integral of the 
motion. Hence it follows immediately that link invariants of type (16.7) and (16.9) 
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will be conservation laws for Eq. (16.12). However, invariants of type (16.9), in 
contrast to h, are not conserved under reconnection. 

It would be unfair to stop at this point without saying a few words in praise of 
the integral invariant h, which is often called, following Arnol'd, the Hopfasymptotic 
invariant. This name is far from a random choice. For an arbitrary field A the quantity 
h assumes real values, but if f2 is chosen as $3 and the field A is identified with the 
tangent field to S 3, then the invariant h is the classical Hopf invariant of the bundle 
f : S 3 --+ S 2, and h is integer-valued. The representation of h in the form (16.12) 
in this case was obtained by J.N.C. Whitehead as early as 1947. The Hopf invariant 
also makes possible another topological interpretation, proposed by Hopf himself. 
Suppose a regular mapping f : S 3 --+ ~3 is given (the rank of f is 2), and x0 and xl are 
regular points on S 2. The preimages of the points x0 and xl will be respectively curves 
10 and ll in S 3. The Hopfinvariant h(f)  of the mapping f is the linking coefficient of 
the curves I0 and ll. V. Arnol'd has shown that the Hopf asymptotic invariant can be 
interpreted as the average asymptotic linking number (over all pairs of lines of force). 
The latter is determined by the asymptotics of the linking of possibly nonclosed lines 
when they are extended indefinitely and closed in a nonsingular manner. This result 
can be generalized to higher linking coefficients. 

The Hopf invariant arises in the most diverse problems of physics, from the Dirac 
monopole to the DNA ring structures, but that is a subject for another book. 

In concluding this chapter and noticing with regret the large gaps and the sketch- 
iness of the exposition, I comfort myself with the words of a classic of Russian liter- 
ature, Koz'ma Prutkov: You cannot encompass the unencompassable. As compensa- 
tion I refer the reader to a number of recently published books, surveys, and articles, 
where it is possible to obtain a very complete picture of the problems, both those 
touched upon here and those not touched upon [At], [Bi], [Ka], [Ko], [Mo], [MR], 
[N], [Tu]. 



Chapter 17 

What Next? 

" N the preceding chapters I have tried to give the reader an idea of some areas of 
physics in which topological methods have proved useful. I have tried to show that 

topological ideas are exceptionally close to modern (and not only modern) ideas in 
physics. 

Although realistic applications of topology in physics began comparatively re- 
cently, several results can already be exhibited. If we consider topology in a broader 
mathematical context, including in it both algebraic and differential geometry (which 
is now completely justified), one can say that for modern physics topology is the 
same kind of defining structure that classical geometry was for Einstein's general 
relativity or group theory and Hilbert spaces were for quantum mechanics. Quan- 
tum field theory is still a promising area of applications for topology. Attempts to 
construct a unified field theory including all types of interaction lead to the study of 
high-dimensional bundles with a great variety of gauge symmetry groups. 

At present the most promising construction is string theory and its generalization, 
membrane theory. In these theories particles are represented as elongated objects 
whose size is of the order of the Planck scale. Unfortunately, the possibility of ex- 
perimental confirmation of the predictions of string theory are remote at present. For 
that reason physicists are studying strings and membranes as mathematical objects 
and discovering highly nontrivial properties in them. The results obtained in recent 
years in string theory have exerted a real effect on topology itself. Several of the lat- 
est discoveries--mirror symmetry and Seiberg-Witten invariants---have made great 
progress possible in the solution of classical problems of algebraic geometry and 
topology: an effective description of the moduli spaces of algebraic curves and the 
classifications of four-dimensional smooth manifolds. In both cases physical consid- 
erations connected with the occurrence of a certain symmetry-duality transform into 
precise mathematical assertions. In the first case this is the computation of the space 
of rational curves on special algebraic varieties (Calabi-Yau varieties); in the second 
case it is the discovery of invariants of spinor bundles on four-dimensional smooth 
varieties. 

String theory provides a natural realization of ideas that connect topology and 
number theory. For example, when the coupling constants are small or large, the 

183 
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computation of the partition function of a string leads to nontrivial duality relations 
for the space of automorphic functions. The discrete symmetry that holds between 
electric and magnetic charges admits an extension to the group SL(2, Z)) in the Yang- 
Mills theory,which in turn reflects the profound connection of string theory and the 
Yang-Mills equations. In studies of this whole circle of questions the most up-to- 
date mathematical methods harmonize beautifully with the classical structures, where 
Riemann's ideas occupy a position of high honor. In a number of other areas of 
physics the close connection with topology provides unexpected discoveries and new 
formulations of problems. 

17.1 The Quantum Hall Effect 

The quantum Hall effect is a remarkable example of a discovery showing that the 
most interesting things in science sometimes come about absolutely unexpectedly. 

The classical predecessor of the quantum Hall effect was discovered by the British 
physicist E.H. Hall in 1879. What is curious is that it was published in a mathemati- 
cal journal, the American Journal of Mathematics. The essence of the classical Hall 
effect is as follows: If a current is passed through a thin plate in a magnetic field per- 
pendicular to the plate, a resistance (and conductivity) arises in a plane perpendicular 
to the moving current. The classical conductivity is Hall conductivity trxy (here O'xy 

is the corresponding coordinate of the conductivity tensor), which is a function of the 
electron density and cannot be quantized. 

The study of bulk semiconductors in strong magnetic fields over the past few 
decades has shown a monotonic variation in the resistance as the magnetic field is 
increased. Work in this field required sophisticated experimental technique, even 
though it seemed routine from the theoretical point of view. The announcement by the 
German physicist K. von Klitzing that he had discovered a discontinuous (quantum) 
character in the variation of Hall conductivity in two-dimensional silicon films, was 
all the more unexpected. His result was published in 1980 and awarded a Nobel prize 
in 1985, more than a century after the discovery of the classical Hall effect. 

The motion of a stream of electrons in thin films (--. 50 ,~) in a strong magnetic 
field and at sufficiently low temperatures (~  1 K) can be considered two-dimensional. 
The energy spectrum of such a system is quantized these are the so-called Landau 
levels. However, the condition of quantization of Hall conductivity does not at all 
follow from the condition of quantization connected with the behavior of an individual 
electron. Klitzig's experiment gave the quantum value of gxy with great precision 
(10-1~ 

O'xy = nve2 / h. 

Here e is the charge of an electron, h is Planck's constant, v is a constant (the fill- 
ing factor), and n is an integer. The importance of this discovery is difficult to 
overestimate when one takes into account that the quantity e2/h is the fine structure 
constant--a fundamental constant in quantum electrodynamics. 
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The occurrence of quantum levels in Hall conductivity is itself of great interest 
from the point of view of fundamental physics. These quantum levels are not con- 
nected with the geometry of the image nor with the occurrence of impurities, and 
undoubtedly are of topological nature. Theoreticians had not yet managed to think 
up any explanation for the integer quantum Hall effect in 1982, when a new surprise 
awaited them. A group of experimenters at Bell Laboratory (Cherry Hill, New Jer- 
sey), consisting of D.C. Tsui, H.L. St6rmer, and A.C. Gossard, discovered a fractional 
quantum effect in much thinner films, that is, the occurrence of levels of the form: 

n = 1/3, 2/3, 4/3, 5/3 

n = 1/5, 2/5, 3/5, 4/5, 7/5, 8/5 

n = 2/7, 3/7, 4/7, 5/7, 10/7, 11/7. 

This phenomenon came to be known as the fractional quantum Hall effect. 1 
Here again, although the independence of these quantum numbers from geometry 

and other similar effects seems to indicate that they are of a topological nature, the 
occurrence of fractional charges has not yet found a satisfactory explanation. More- 
over there exist completely different explanations of the occurrence of integer and 
fractional charges. Even the occurrence of fractions with different parities in the de- 
nominator has no unified description. 

While the theory of the integer quantum Hall effect finds a sufficiently natural ex- 
planation in the context of filling of the Landau levels, and the topological invariants 
arise as a result of integrating the wave functions of the system over basis cycles de- 
termined by boundary conditions and gauge transformations, the fractional hall effect 
does not fit into this system. Strenuous efforts are being undertaken in an attempt to 
explain the quantum Hall effect on the basis of modern topological field theories, the 
so-called Chern-Simons models. From the mathematical point of view these theories 
have a natural connection with such fundamental mathematical structures as braid 
groups, knots, and the like, in which fractional invariants have a natural explanation. 
But final success on that road remains distant. 

It is interesting that the development of the experimental technique is advancing in 
a direction that makes it possible to study not only two-dimensional electron "fluids" 
and "gases," but also "quasi-one-dimensional" (localized in one dimension) and even 
zero-dimensional ones (quantum dots). The study of such systems has begun only 
recently and is furnishing an equal number of surprises. 

17.2 Quasicrystals 

The brief time interval from 1980 to 1985 was marked by several fundamental dis- 
coveries. The next in importance after the quantum Hall effect just mentioned and 
high-temperature superconductivity was the discovery of quasicrystals. In a paper 

1Charges with even denominators were found later (n = 3/2, 5/2). For this discovery, H.L. St6rmer, 
D.C. Tsui, and theoretician R. Laughlin, were awarded the 1998 Nobel Prize in physics. 
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published in 1984 in the Physical Review Letters, D. Schechtman, I. Blech, D. Gra- 
tias, and J. Cahn announced that they had observed icosahedral symmetry in certain 
metallic alloys (in particular AI-Mn and A1-Mn--Si). A short while later the obser- 
vation of decagonal symmetry was announced. (Systems with 8th- and 12th-order 
axes of symmetry were subsequently found.) As is well-known in crystallography, 
crystals with 5th-order, 8th-order, 10th-order and 12th-order, etc., axes of symmetry 
do not exist, since such symmetries are inconsistent with the translation-invariance 
of the crystal lattice. Thus physicists had discovered a new structure having high 
local symmetry, but lacking spatial periodicity. Structures of this type were called 
quasicrystals. 

The discovery of quasicrystals could not have occurred at a more opportune time, 
if one can use such an expression to characterize an outstanding discovery. Theoreti- 
cians had already constructed models of solid bodies with quasiperiodic tilings of the 
plane. In particular the famous Penrose tilings with two types of rhombi having angles 
of 144~ ~ and 108~ ~ can be regarded as a quasicrystal structure, while in solid 
state physics the so-called incommensurable structures were being studied. However, 
this research was lacking in motivation, which appeared in connection with the dis- 
covery of a real physical object realizing the theoretical mathematical structures. 

As a result of extraordinarily intensive and fruitful research in which physicists, 
crystallographers, and mathematicians all participated, it became possible to explain 
the deep properties of quasicrystals having general scientific interest. If we confine 
ourselves to only theoretical questions, the original problem was to classify quasicrys- 
tals. It turned out that the majority of quasicrystals (but not all) can be obtained by 
projecting a multidimensional "crystal" onto three-dimensional space. The idea of 
the construction is as follows. Consider the six-dimensional Euclidean space ~6, 
in which a representation of the icosahedral group I is acting. It is known that the 
representation I can be decomposed into two invariant three-dimensional represen- 
tations acting in ]R 3 and an orthogonal copy of it ~3• We embed the space ]I~ 3 in 
]~6 at an "irrational" angle. This means that the intersection of ]R 3 with the integer 
lattice Z 6 in ]~6 consists of the origin alone. The projection of Z 6 onto ]R 3 defines 
a tiling of ~3, and that tiling forms a three-dimensional quasicrystal. In the case of 
a two-dimensional quasicrystal the ambient space is ]R 5, in which a representation 
of the group Z5 acts. The group Z5 acts by cyclic permutations of the basis vectors 
el . . . . .  e5 in ~5. The representation of the group Z5 can be decomposed into the di- 
rect sum of three irreducible representations generated by the characters of the group 
Zs: {exp(+2zr/5), exp(-4-4zr/5), 1}. The two-dimensional plane spanned by the two 
vectors of the first representation is irrationally embedded in ~5, and the projection of 
the integer lattice Z 5 onto it defines a quasicrystal tiling. In this way one can obtain 
a Penrose tiling (Fig. 17.1). This construction was invented by the Dutch mathemati- 
cian N.G. de Bruijn several years before the discovery of quasicrystals. Various ap- 
proaches have been proposed to describe all possible quasicrystal tilings of the plane 
and three-dimensional space, including both geometric constructions based on certain 
rules for pasting elementary cells together (local rules) and more algebraic methods 
connected with the generalization of the concept of a crystallographic group. 
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Figure 17.1: A Penrose tiling. 

Yet another area of research is connected with the description of the structure of 
defects in quasicrystals. This problem turns out to be significantly more complicated 
than in ordinary or liquid crystals. The methods of homotopy theory are not directly 
applicable in the theory of quasicrystals. They can give only a very rough estimate 
of the possible types of defects. The main difficulties involve the fact that there is no 
natural way to distinguish the internal degrees of freedom from the spatial degrees 
of freedom in a quasicrystal; in mathematical language this means that the order pa- 
rameter space is locally dependent on the point of physical space. Attempts to get 
around this difficulty are leading to interesting geometric structures. In particular 
M. Kl6man is the author of the interesting idea of describing defects in a quasicrystal 
by passing to hyperbolic geometry. Nevertheless, the problem of describing defects 
in a quasicrystal cannot yet be considered solved. 

At present there seems to be a lull in the physics of quasicrystals. Experimental 
data are being compiled, rather large specimens of quasicrystals have been grown, and 
their various physical characteristics (electric conductivity, magnetic properties, and 
the like) are being studied. However, there is no doubt that the connection between 
quasicrystals and profound mathematical and physical structures will provide this area 
of research with a bright future. 
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Figure 17.2: Disclination in quasicrystals. 

17.3 Membranes 

In recent years there has been great activity in so classical an area of mathematics 
as the theory of minimal surfaces. Connections have been discovered between that 
subject and the theory of integrable systems, some old problems have been solved, 
and new examples of minimal surfaces have been found. Computer graphics has made 
it possible to obtain a very visualizable representation of minimal surfaces. Progress 
in this area has been motivated to no small degree by the discovery of new physical 
phenomena. The most interesting and still little-studied systems are lyotropic liquid 
crystals, in which lamellor structures have been discovered of complicated shape with 
various types of symmetry (cubic, smectic, and the like). In particular vesicles have 
been constructed made of organic molecules, more precisely phospholipid bilayers, 
which from the mathematical point of view can be regarded as a two-dimensional 
surface. The shape of the surface is determined by the bending energy, which depends 
on the mean curvature H of the surface: 

8 = k f f H2 dS, H =  rl + r2 
2 ' 

M 

(17.1) 

Here rl and r 2 are the principal curvatures of the surface M, and k is the bending 
rigidity. 

The problem of determining the shape of the surface reduces to finding the min- 
imum of the functional (17.1). Here both compact and noncompact surfaces are of 
interest. In the compact case it is natural to study the extremal problem in the class 
of surfaces of fixed genus, by adding to (17.1) a term proportional to the Gaussian 
curvature 

kG 1 [  K dS. (17.2) 
JJ 
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A functional of type (17.1) is known in modem mathematics as a Wdlmore func- 
tional, although problems of this type had been studied as early as the 1920's. This 
functional is connected with important variables of the problem. For example, the 
Willmore conjecture that for toroidal surfaces the functional (17.1) has a global min- 
imum on the flat torus (the Clifford toms): ~min T = 2 rr2. 

The majority of Willmore surfaces (but not all) can be obtained by stereographic 
projection of minimal surfaces embedded in the three-dimensional sphere. For physics 
it is important to determine the number of independent parameters in the space of 
Willmore surfaces of fixed genus--the number of independent conformal modes- -  
since they are connected with the modes of thermal fluctuations of the surface. It 
can be shown that conformal modes are determined by the Riemann moduli of the 
surfaces. A detailed study of this question is of great interest. 

Membranes of noncompact type also occur in nature. They form a system of 
periodic minimal surfaces (planes, for example) joined by tubes. It is remarkable that 
the first examples of such surfaces were constructed by Riemann himself in the early 
1860's. 

Besides the traditional problems of the theory of minimal surfaces, curious non- 
standard mathematical problems arise in membrane theory. For example, describe 
the behavior of the membranes for which the Gaussian curvature is not fixed, but 
only some distribution of it is given. This is essentially a matter of a two-dimensional 
realization of the ideas of Clifford and Hawking in the theory of gravitation. This 
two-dimensional "foam" forms a special phase, the sponge phase. The study of mem- 
branes is important not only for physics, but also for biology. Biological membranes 
play a decisive role in the life of a cell. There is reason to hope that research in 
membrane theory will stimulate new mathematical problems as well. 

Unexpected topological applications are being discovered in seemingly well-stud- 
ied areas. In the study of Fermi surfaces of normal metals in magnetic fields H, 
S. Novikov and his students have discovered nontrivial topological properties of dy- 
namic systems on surfaces. These results have immediate physical consequences. In 
particular it has been proved that in the situation of general position, when the quasi- 
classical trajectories of electrons are not closed, there exists a direction q, orthogonal 
to the field H, along which conductivity tends to zero. It is vital that all this is part 
of a more general mathematical theory--the theory of multivalued functionals. The 
theory of multivalued functionals is a generalization of Morse theory and has broad 
applications. 

We have taken our last example from the work of the French physicists A. Joets 
and R. Ribotta, who are studying the optical properties of convective flows in liquid 
crystals. In polarized light one can observe a complicated behavior of defects in the 
transition from the laminar mode to the turbulent mode. Besides the study of the 
dynamics of this process, in which dissociation and reconnection of defects plays 
an essential role, the study of the caustics formed by reflected light has independent 
interest. From the mathematical point of view this leads to the study of caustics with 
a symmetry group. Here new problems arise, in which the methods of singularity 
theory and dynamic systems may be effectively applied. 
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There are many other interesting topics in which topology and physics comple- 
ment each other beautifully. One may mention the latest research in the statistics of 
knots and the applications of knot theory to the analysis of the structure of DNA, pa- 
pers on quantum gravity, and a number of others; but it seems to me that the examples 
just discussed will suffice to convince the reader that the romance of topology and 
physics is fated to have a long and happy life. 



Chapter 18 

A Brief Historical Survey 

T H E  reader be interested in the history of the origin of the series of ideas may 
which have been discussed in this book. 

A large part of the topological concepts used in examples considered here are 
far from new. Classification of two-dimensional surfaces was completed in the early 
1920s. The hedgehog theorem (a result of the index theorem for critical points of 
vector fields) was proved by Poincar6 for two-dimensional surfaces, and the multidi- 
mensional case was cleared up in 1926 by the Swiss topologist H. Hopf (1894-1971). 
The concept of homotopy groups and fiber bundles appeared in the mid 1930s. 

At the time physics was proceeding in fundamentally different directions. Physi- 
cists were concerned with quantum mechanics of nuclei, scattering processes, and 
related matters. The analytic apparatus of theoreticians included the standard divi- 
sions of mathematics: the theory of functions of one complex variable, the apparatus 
of special functions, operations with matrices, and so forth. It was only the energetic 
activity of such enthusiasts as E. Wigner (1902-1995) and H. Weyl (1885-1955) that 
paved the way to apply group-theoretic methods. 

After the war the situation began to change somewhat. New tendencies in ,the- 
oretical physics came noticeably closer to the new concepts in topology; however, 
this convergence passed completely unnoticed by both sides. An illustration of this 
oversight is the introduction of connections into fiber bundles. In general form this 
concept appeared in the works of the French mathematician Ch. Ehresmann (1905- 
1979) in 1950 and in physics in the form of Yang-Mills gauge fields in 1954. As one 
of the authors, the Nobel laureate C. Yang, recounted, "At the time we were interested 
in equations and did not think about their geometric interpretation." 

Yang became acquainted with the mathematical theory of fiber bundles only 20 
years after the appearance of his work with Mills. Speaking in 1979 at a symposium 
dedicated to one of the greatest contemporary geometers, S. Chern, Yang shared his 
reminiscences: 

Around 1968 1 realized that gauge fields, both non-Abelian and Abelian, 
can be formulated in terms of nonintegrable phase factors, that is, path- 
dependent group elements. I asked my colleague Jim Simons about the 
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mathematical meaning of these nonintegrable phase factors, and he told 
me they are related to connections with fiber bundles. But I did not then 
appreciate that the fiber bundle was a deep mathematical concept. In 
1975 I invited Jim Simons to give the theoretical physicists at Stony 
Brook a series of  lectures on differential forms and fiber bundles. I 
am grateful that he accepted the invitation and I was among the bene- 
ficiaries. Through these lectures T.T. Wu and I finally understood the 
concept of nontrivial bundles and the Chern-Weil theorem, and realized 
how beautiful and general the theorem is. We were thrilled to appre- 
ciate that the nontrivial bundle was exactly the concept with which to 
remove, in monopole theory, the string difficulty, which had been bother- 
some for over forty years [that is, single threads emanating from a Dirac 
monopole] . . . .  When I met Chern, I told him that I finally understood the 
beauty of  the theory of  fiber bundles and the elegant Chern-Weil theo- 
rem. That non-Abelian gauge fields are conceptually identical to ideas in 
the beautiful theory of fiber bundles, developed by mathematicians with- 
out reference to the physical worM, was a great marvel to me. In 1975, 
I mentioned this to Chem. I said, "This is both thrilling and puzzling, 
since you mathematicians dreamed up these concepts out of nowhere." 
Chern immediately protested, "No, no, these concepts were not dreamed 
up. They were natural and real. ''1 

The development of  physics and mathematics is proceeding along independent paths. 
Every science has its own internal motivating forces. Nonetheless, it turns out that for 
each fundamental theory in physics there is a corresponding specific mathematical 
structure. 2 

Physics Mathematics 

Special relativity 
General relativity 
Quantum mechanics 
Electromagnetism and 

non-Abelian gauge fields 
String theory 

Four-dimensional space-time 
Riemannian geometry 
Hilbert space 
Fiber bundles 

Moduli spaces on Riemann surfaces 

Complex interactions between mathematics and physics have also been observed 
in more modest situations. In his classical 1907 paper on elasticity theory, "On 
the equilibrium of elastic multiconnected bodies," the famous Italian mathematician 
V. Volterra (1860-1940) showed that the formation of internal stresses (singularities) 
in a solid body depends on the order of connectivity of the medium. Volterra clearly 
recognized the topological origin of singularities in a solid body. He obtained a series 

1C.N. Yang, "Chem Symposium," June 1979 (preprint CERN TH 2725 [1979]); "Magnetic 
Monopoles, Gauge Fields, and Fiber Bundles," (preprint ITP/SB 77-14). 

2This table of comparisons is borrowed from the paper of C.N. Yang presented to the conference 
dedicated to the sixtieth birthday of R. Marshak. Only the last line was added by the present author. 
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of purely mathematical results which are interesting for the topology of surfaces. The 
work of Volterra enjoyed a wide reputation among specialists; however, its topologi- 
cal basis did not find subsequent development in the physics of a solid body. 

When one reads a work on liquid crystals (for example, the outstanding book of 
P. de Gennes, Liquid Crystals), topological methods for describing many phenom- 
ena suggest themselves. The first accurate applications of homotopy theory appeared 
only in 1976. In field theory, this occurred two years earlier, although the paper of 
D. Finkelstein and C. Misner "Some new conservation laws," was published as early 
as 1959, in the Annals o f  Physics. This paper applied topological methods to study 
the structure of space-time, and topological charges with the help of homotopy groups 
were introduced. One can only regret that this paper did not attract more attention. 

The well-known physicist and mathematician F. Dyson devoted an interesting ar- 
ticle to the interactions of physics and mathematics. Its title, "Missed Opportunities," 
gives an idea of Dyson's views on the situation. 3 The work of the last decade shows 
that mathematicians and physicists have learned the lessons of history, and a closer 
relationship already has given promising results. This book has discussed only a small 
part of such accomplishments, but the examples presented are sufficient to appreciate 
the wise words of the famous French mathematician Jacques Hadamard, "He who 
would unlock secrets should not lock himself away in one area of science but should 
maintain connections with its other areas as well. ''4 

3EJ. Dyson, Bull. Amer. Math. Soc., 78 (1972), p. 635. 
4Hadamard, J. Essai sur la psychologie de l'invention dans le domaine mathEmatique, Blanchard: 

Paris, 1959. 
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